Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2+22+23+...+262+263
2A=2+22+23+24+...+263+264
2A-A=2+22+23+24+...+263+264-1+2+22+23+...+262+263
A=264-1
A = 1 + 2 + 22 + 23 + ... + 262 + 263
2A = 2 + 22 + 23 + 24 + ... + 263 + 264
A = 264 - 1
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
\(S=1+2+2^2+2^3+2^4+...+2^{2011}\)
\(\Rightarrow S=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2009}\left(1+2+2^2\right)\)
\(\Rightarrow S=7+2^3.7+...+2^{2009}.7\)
\(\Rightarrow S=7\left(1+2^3+...+2^{2009}\right)⋮7\)
\(\Rightarrow dpcm\)
vì tổng của S chia hết cho 3 nên S chia hết cho 3. có thế cũng hỏi =))
Chúc bạn an toàn
s=[1+2]+[2+2 mũ 2]+...+[2 mũ 6+2 mũ 7]
s=1 nhân [1+2]+2 nhân [1+2]+...+2 mũ 6 nhân [1+2]
s=[1+2] nhân[1+2+...+2 mũ 6
s=3 nhân [1+2+...+2 mũ 6]
=> s chia hết cho 3
\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)
\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{95}+2^{96}\right)\\ S=\left(1+2\right)\left(2+2^3+...+2^{95}\right)\\ S=3\left(2+2^3+...+2^{95}\right)⋮3\left(1\right)\\ S=\left(2+2^2\right)+2^3\left(1+2^2+...+2^{93}\right)\\ S=8+8\left(1+2^2+...+2^{93}\right)⋮8\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow S⋮24\)
S = (1+ 2)+(22 + 23 )+( 24 + 27) + (26 + 25)
S= 3+45+51+51
S=3+3.15+3.17+3.17
S=3.(1+15+17.2): hết 3
tick nha nhanh nhất nè
S = 1 + 2 + 22 + 23 + 24 + ... + 262 + 263
2S = 2 . ( 1 + 2 + 22 + 23 + 24 + ... + 262 + 263 )
2S = 2 + 22 + 23 + 24 + 25 + ... + 263 + 264
2S - S = 2 + 22 + 23 + 24 + 25 + ... + 263 + 264 - ( 1 + 2 + 22 + 23 + 24 + ... + 262 + 263 )
S = 264 - 1
Vậy S = 264 - 1
\(S=1+2+2^2+2^3+.....+2^{62}+2^{63}\)
\(2S=2+2^2+2^3+2^4+....+2^{63}+2^{64}\)
\(2S-S=2+2^2+2^3+2^4+.....+2^{63}+2^{64}-\left(1+2+2^2+2^3+.....+2^{62}+2^{63}\right)\)
\(S=2^{64}-1\)