Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{15}+2^{16}+2^{17}\right)\)
\(S=7+2^3\left(1+2+2^2\right)+...+2^{15}\left(1+2+2^2\right)\)
\(S=7\left(1+2^3+...+2^{15}\right)\) chia hết cho 7
cái lòn con gái banh ra , con kẹt con trai thụt vào rồi liếm vào đó...........( tự hiểu, phê chưa)
\(S=1+2+2^2+2^3+2^4+2^5+2^6+2^7\)
\(\Rightarrow S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)
\(\Rightarrow S=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+2^6\left(1+2\right)\)
\(\Rightarrow S=\left(1+2\right)\left(1+2^2+2^4+2^6\right)\)
\(\Rightarrow S=3\left(1+2^2+2^4+2^6\right)⋮3\)
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210
= (2 + 22) + (23 + 24) +.....+ (29 + 210)
= 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)
= 3.(2 + 23 +.... + 29) chia hết cho 3
=> S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)
b) 1+32+33+34+...+399
=(1+3+32+33)+....+(396+397+398+399)
=40+.........+396.40
=40.(1+....+396) chia hết cho 40 (đpcm)
Ta có:
S= 1+2+22+23+24+25+26+....+235
S= (1+2)+(22+23)+(24+25)+.....+(234+235)
S= 3+22*3+24*3+....+234*3
S= 3( 1+22+24+....+234)
vì 3 chia hết cho 3
nên: 3( 1+22+24+...+234) chia hết cho 3