K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

21 tháng 11 2016

ta có 

a :28 = x dư 22 =>a=x.28+22

b:14 =y dư 13 => b=y.14+13

=>a+b=x.28+22+y.14+13=x.28+y.14+35

vì x.28 chia hết cho 7

y.14 chia hết cho 7

35 chia hết cho 7 

nên x.28+y.14+35 chia hết cho 7 hay a+b chia hết cho 7

21 tháng 11 2016

Bạn làm khác mình nhưng kết quả đúng rồi ^^ k bn nè 

1 tháng 10 2017

S=1+2+2^2+2^3+....+2^59 chia hết cho 3

S=(1+2)+(2^2+2^3)+..+(2^58+2^59)

S=1x(1+2)+2^2x(1+2)+.....+2^58x(1+2)

S=1x3+2^2x3+....+2^58x3

S=3x(1+2^2+.....+2^58)chia hết cho 3

Vậy S chia hết cho 3

tương tự chia hết cho 7 thì ghép 3 số đầu; 15 thì ghép 4 số

you học lớp mấy

27 tháng 9 2017

a) Ta có: \(S=1+2+2^2+...+2^{59}\)

\(\Rightarrow2S=2+2^2+2^3+...+2^{60}\)

\(\Rightarrow S=2S-S=\left(2+2^2+...+2^{60}\right)-\left(1+2+...+2^{59}\right)\)

\(\Rightarrow S=2^{60}-1\)

3 tháng 10 2017

1. S = 1 + 2 + 2^2 +.........+ 2^59

  2S = 2 + 2^2 + ...........+ 2^59 + 2 ^60

2S - S = (2 + 2^2 +.........+ 2^60) - (1 +2 + 2^2 +..........+ 2^59)

 S = 2^60 - 1

mà 2^60 -1 = 2^60 - 1 => S = 2^60 -1

2.

Ta có : S = 1 + 2 +..............+ 2^59

S = 1(1 +2) + 2^2(1 +2 ) +........+ 2^58(1 +2)

S = 1.3 + 2^2.3 +...............+ 2^58.3

S = 3.(1 + 2^2 +.............+2^58) nên S chia hết cho 3

Cứ như vậy bạn nhóm các số hạng của S để tạo thành tổng có kết quả là 7 và 15 rồi tự chứng minh nhé

Có : \(S=1+2+2^2+2^3+....+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)

\(\Rightarrow S=2^{100}-1< 2^{100}\)

Vậy \(S< 2^{100}\)

 S=1+2+22+23+....+299

⇒2S=2+22+23+....+2100

⇒2S−S=2100-1

S=2100-1

vì 2100 -1<2100

⇒S<2100

 

14 tháng 7 2023

\(S=1+2+2^2+2^3+...+2^9\) 

Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\) 

\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)

\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\) 

Vậy \(S< 5.2^8\)

\(#Tuyết\)

2S=2+2^2+...+2^10

=>S=2^10-1=1023

5*2^8=256*5=1280

=>S<5*2^8