Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S có số số hạng là
(99-0):1+1=100(số hạng)
ta thấy 100 chia hết cho 4 nên ta ghép 4 số liên tiếp lại với nhau ta có
S=(1-3+32-33)+....+(396-397+398-399)
S= -20+...+(-20) chia hết cho -20(đpcm)
S = 1 - 3 + 32 - 33 + ....... + 398 - 399
S = ( 1 - 3 + 32 - 33 ) + ........ + ( 396 - 397 + 398 - 399 )
S = ( - 20 ) + .......... + 396 . ( - 20 )
S = ( - 20 ) . ( 1 + ........ + 396 ) là bội của - 20
a,S=(1-3+32-33)+............+(396-397+398-399)
S=(-20)+...................+396.(1-3+32-33)
S=(-20)+................+396.(-20)
S=(1+34+........+396).(-20) chia hết cho 20(đpcm)
b,3S=3-32+33-34+..............+399-3100
3S+S=(3-32+33-34+.............+399-3100)+(1-3+32-33+...............+398-399)
4S=-3100+1
S=\(\frac{-3^{100}+1}{4}\)
a) S=1-3+3^2-3^3+...+3^98-3^99
=(1-3+3^2-3^3)+...+(3^96-3^97+3^98-3^99)
=-20+..+3^96(1-3+3^2-3^3)
=-20(1+...+3^96) chia hết cho -20
=> S là bội của -20
b) S=1-3+3^2-3^3+..+3^98-3^99
3S=3-3^2+3^3-3^4+...+3^99-3^100
3S+S=3-3^2+3^3-3^4+...+3^99-3^100+1-3+3^2-3^3+...+3^98-3^99
4S=-3^100+1
S=(-3^100+1):4
S=(1-3+32-33)+....................+(396-397+398-399)
S=(-20)+........................+396.(1-3+32-33)
S=(-20)+..................+396.(-20)
S=(1+34+.............+396).(-20) chia hết cho -20
=>S là bội của -20(đpcm)
b,3S=3-32+33-34+...............+399-3100
3S+S=(3-32+33-34+............+399-3100)+(1-3+32-33+...............+398-399)
4S=1-3100
S=\(\frac{1-3^{100}}{4}\)
ta có: S=1-3+3^2-3^3+...+3^98-3^99
=>S=(1-3+3^2-3^3)+....+(3^96-3^97+3^98-3^99)
=>S=-20+....+(3^96.1-3^96.3+3^96.3^2-3^96.3^3)
=>S=-20+...+3^96(1-3+3^2-3^3)
=>A=-20+...+3^96.(-20)
=>S=-20(1+...+3^96)
vì -20 chia hết cho -20 nên S chia hết cho -20
vậy S là bội của -20
b) ta có: S=....
=>3S=3-3^2+3^3-3^4+....+3^99-3^100
=>3S+S=1-3^100
=>4S=1-3^100
=>S=1-3^100/4
vậy....
a) S=1-3+32-33+...+398-399
=>S=(1-3+32-33)+(34-35+36-37)+(38-39+310-311)+...+(396-397+398-399)
=>S=-20+34.(1-3+32-33)+38.(1-3+32-33)+...+396.(1-3+32-33)
=>S=-20+34.(-20)+38.(-20)+...+396.(-20)
=>S=-20.(1+34+38+...+396)
=>S chia hết cho -20
b) S=S = 1 - 3 + 32 - 33 + ... + 398 - 399
=>3S=3-32+33-34+...+399-3100
=>3S+S=(3-32+33-34+...+399-3100)+(1-3+32-33+...+398-399)
=>4S=1-3100
=>S=1-3100 /4
Cho S= 1-3+32-33+...+398-399
a, Chứng minh S là bội của 20
b, Tính S, từ đó suy ra 3100chia cho 4 dư 1
S=1-3+32-...+398-399
=(1-3+32-33)+...+(396-397-398-399)
=-20+...+396.(-20)
=-20.(1+...+396) (là bội của 20)
S=1-3+3^2-...+3^98-3^99
=> 3S=3-3^2+3^3+...+3^99-3^100
=>4S=1-3^100 (suy ra từ 2 biểu thức trên)
do chia hết cho -20 => 4S chia hết cho -20=>4S chia hết cho 4 => 1-3^100 chia hết cho 4
=>3^100 chia 4 dư 1
vậy...
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1\left(1-3+3^2-3^3\right)+...3^{96}\left(1-3+3^2-3^3\right)\)
\(=1.\left(-20\right)+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)\)
\(=-20.\left(1+3^4+...+3^{96}\right)\)
\(\Rightarrow S⋮-20\)\(\Rightarrow S\in B\left(-20\right)\left(Đpcm\right)\)