Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
a, \(\left(x+m\right)m+x>3x+4\)
\(\Leftrightarrow mx+m^2+x>3x+4\)
\(\Leftrightarrow\left(m-2\right)x+m^2-4>0\left(1\right)\)
Nếu \(m=0,\) bất phương trình vô nghiệm
Nếu \(m>0\)
\(\left(1\right)\Leftrightarrow x>-m-2\)
\(\Rightarrow x\in\left(-m-2;+\infty\right)\)
\(\Rightarrow m>0\) thỏa mãn yêu cầu bài toán
Nếu \(m< 0\)
\(\left(1\right)\Leftrightarrow x< -m-2\)
\(\Rightarrow\) Không thỏa mãn
Vậy \(m>0\)
b, \(m\left(x-m\right)\ge x-1\)
\(\Leftrightarrow mx-m^2\ge x-1\)
\(\Leftrightarrow\left(m-1\right)x\ge m^2-1\left(1\right)\)
Nếu \(m=1,\) bất phương trình thỏa mãn
Nếu \(m>1\)
\(\left(1\right)\Leftrightarrow x\ge m+1\)
\(\Rightarrow m>1\) không thỏa mãn yêu cầu
Nếu \(m< 1\)
\(\left(1\right)\Leftrightarrow x\le m+1\)
\(\Rightarrow m< 1\) thỏa mãn yêu cầu bài toán
Vậy \(m< 1\)
\(x\left(x-m^2-1\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\x\ge m^2+1\end{matrix}\right.\)
Để S và tập (5;10) có phần tử chung
\(\Leftrightarrow m^2+1< 10\)
\(\Rightarrow-3< m< 3\)
a, m2x - 1 < mx + m
⇔ (m2 - m)x < m + 1
Bất phương trình vô nghiệm khi
\(\left\{{}\begin{matrix}m^2-m=0\\m+1\le0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy phương trình có nghiệm với ∀m ∈ R
b, (m2 + 9)x + 3 ≥ m - 6mx
⇔ (m2 + 6m + 9)x ≥ m + 3
Phương trình có nghiệm đúng với ∀x khi m = -3
c, 8m2x - 4m2 ≥ 4m2x + 5mx + 9x - 12
⇔ 4m2x - 5mx - 9x ≥ 4m2 - 12
⇔ (4m2 - 5m - 9)x ≥ 4m2 - 12
Bất phương trình có nghiệm đúng với ∀x khi m = -1
\(\frac{\left(m+1\right)x^2+\left(4m+2\right)x+4m+4}{mx^2+2\left(m+1\right)x+m}-1\le0\)
\(\Leftrightarrow\frac{x^2+2mx+3m+4}{mx^2+2\left(m+1\right)x+m}\le0\)
Để tập nghiệm của BPT đã cho là R
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2mx+3m+4\ge0\\mx^2+2\left(m+1\right)x+m< 0\end{matrix}\right.\) \(\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'_1=m^2-3m-4\le0\\m< 0\\\Delta'_2=\left(m+1\right)^2-m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le m\le4\\m< 0\\2m+1< 0\end{matrix}\right.\) \(\Rightarrow-1\le m< -\frac{1}{2}\)
Vậy chỉ có một phần tử thôi hả thầy