Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=\frac{6}{15}+\frac{6}{16}+\frac{6}{17}+\frac{6}{18}+\frac{6}{19}\). Theo như quy tắc đã học ở lớp 5. Ta có:
Các phân số có tử bé hơn mẫu thì phân số đó bé hơn 1
Mà \(\frac{6}{15};\frac{6}{16};\frac{6}{17};\frac{6}{18};\frac{6}{19}\) đều bé hơn 1.
\(\Rightarrow\frac{6}{15}+\frac{6}{16}+\frac{6}{17}+\frac{6}{18}+\frac{6}{19}< 0\RightarrowĐPCM\) (Vì: \(1>\frac{6}{15}>\frac{6}{16}>\frac{6}{17}>\frac{6}{18}>\frac{6}{19}\))
ta có:
6/15+6/16+6/17+6/18+6/19
=31/40+6/17+6/18+6/19
=767/680+6/18+6/19
=1.7777
vậy s không thuộc n
Ta có \(\dfrac{6}{15}>\dfrac{6}{16}>...>\dfrac{6}{19}\) nên \(S< \dfrac{6}{15}.5=2\).
Lại có \(S>\dfrac{6}{19}.5>1\) nên \(1< S< 2\)
\(\frac{1}{4^2}>0;\frac{1}{5^2}>0;...;\frac{1}{50^2}>0\Rightarrow S>0\)
\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\)
\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{49}-\frac{1}{50}\)
\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}< \frac{1}{3}-\frac{1}{50}\)
\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}< \frac{47}{150}< 1\)
=> 0 < S < 1 => S không phải số nguyên
Ta có :
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{5000}\)
\(S=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{5000}\)
\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{4}++\frac{1}{9}+\frac{1}{16}+...+\frac{1}{5000}\right)\)
\(S=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)< 49\)\(\left(1\right)\)
Lại có :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
\(\Rightarrow\)\(-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)>-1\)
\(\Rightarrow\)\(S=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)>49-1=48\)\(\left(2\right)\)
Từ (1) và (2) suy ra :
\(48< S< 49\)
Vậy S không là số tự nhiên
Chúc bạn học tốt ~
\(S=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+...+\left(1-\frac{1}{2500}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
\(=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< 49\left(1\right)\)
Có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
\(\Rightarrow-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)>-1\)
\(\Rightarrow A=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)>49-1=48\)(2)
Từ (1) và (2) => 48<A<49
Vậy S không phải là stn
Ta có :
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)
\(S=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)
\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Vì từ \(2\) đến \(n\) có \(n-2+1=n-1\) số \(1\) nên :
\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\) \(\left(1\right)\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) ta lại có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(A< 1-\frac{1}{n}< 1\)
\(\Rightarrow\)\(S=n-1-A>n-1-1=n-2\)
\(\Rightarrow\)\(S>n-2\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(n-2< S< n-1\)
Vì \(n>3\) nên \(S\) không là số tự nhiên
Vậy \(S\) không là số tự nhiên
Chúc bạn học tốt ~
Ta có : \(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{15}+...+\frac{1}{10000}\right)\)
\(=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)< 99\)
\(\Rightarrow\)S<99 (1)
Đặt \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}< 1\)
\(\Rightarrow\)S>99-1=98 (2)
Từ (1) và (2)
\(\Rightarrow\)98<S<99
\(\Rightarrow\)S\(\notin\)N
Vậy S\(\notin\)N.
Ta có:
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
....
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}\)
\(-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
=> đpcm
Bài 1 :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)
\(\frac{5}{x}=\frac{1+2y}{6}\)
=> x ( 1+2y ) = 5 . 6
=> x ( 2y+1 ) = 30
=> x;2y+1 \(\in\) Ư(30)
vì 2y+1 là số lẻ nên 2y+1 \(\in\) {1;3;5;15;-1;-3;-5;-15}
Ta có bảng
2y+1 | 1 | 3 | 5 | 15 | -1 | -3 | -5 | -15 |
x | 30 | 10 | 6 | 2 | -30 | -10 | -6 | -2 |
y | 0 | 1 | 2 | 7 | -1 | -2 | -3 | -8 |
Vậy các cặp x;y tìm được là \(\hept{\begin{cases}x=30\\y=0\end{cases};\hept{\begin{cases}x=20\\y=2\end{cases}};\hept{\begin{cases}x=6\\y=2\end{cases};\hept{\begin{cases}x=2\\y=7\end{cases}};}\hept{\begin{cases}x=-30\\y=-1\end{cases};}\hept{\begin{cases}x=-10\\y=-2\end{cases};\hept{\begin{cases}x=-6\\y=-3\end{cases};\hept{\begin{cases}x=-2\\y=-8\end{cases}}}}}\)
Bài 2 , b
(3n+2) \(⋮\) n-1
=> 3(n-1) + 5 \(⋮\) n-1
Vì 3(n-1) \(⋮\) n-1 => 5 \(⋮\) n-1
hay n-1 \(\in\) Ư(5)= {1;5;-1;-5}
n \(\in\) {2;6;0;-4}
a) Ta có:
\(\frac{6}{15}+\frac{6}{16}+...+\frac{6}{19}>\frac{6}{19}.5=\frac{30}{19}>1\)
\(\Rightarrow S>1\)
Ta lại có:
\(\frac{6}{15}+\frac{6}{16}+...+\frac{6}{19}< \frac{6}{15}.5=\frac{30}{15}=2\)
\(\Rightarrow S< 2\)
Vậy, 1 < S < 2
b) \(1< S< 2\Rightarrow S\notin Z\)