\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

CMR: S...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

Có \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=1\)

Mà \(\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}< \frac{20}{10}=2\)

\(\Rightarrow1< S< 2\)

Vậy S không phải là số tự nhiên ( đpcm )

5 tháng 8 2016

Ta thấy dãy số trên khi quy đồng mẫu số chứa lũy thừa của 3 với số mũ lớn nhất là 34 => khi quy đồng mẫu số, các phân số đều có tử chia hết cho 3 chỉ có phân số 1/81 có tử không chia hết cho 3

=> S có tử không chia hết cho 3, mẫu chia hết cho 3, không là số tự nhiên (đpcm)

bài này còn có 1 vài cách nữa nhưng nó hơi dài nên mk lm cách này

25 tháng 11 2016

Ta thấy các phân số của tổng S khi quy đồng mẫu số chứa lũy thừa của 2 với số mũ lớn nhất là 24

Như vậy, khi quy đồng mẫu số, các phân số của S đều có tử chẵn, chỉ có phân số \(\frac{1}{16}\) có tử lẻ

Do đó S có tử lẻ mẫu chẵn, không là số tự nhiên (đpcm)

25 tháng 11 2016

help me every body! Thanks

6 tháng 3 2020

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)

\(=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+...+\left(1-\frac{1}{n^2}\right)\)

\(=\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\)

Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{n}\)

\(\Rightarrow\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \left(n-1\right)-\left(1-\frac{1}{n}\right)\)> n - 2

Vậy S không là số tự nhiên

NV
29 tháng 3 2019

Sử dụng khá nhiều kiến thức hằng đẳng thức lớp 8, lớp 7 bó tay

\(\frac{A}{2}=\frac{3^3}{2}-\frac{5^3}{6}+\frac{7^3}{12}-\frac{9^3}{20}+...-\frac{197^3}{9702}+\frac{199^3}{9900}\)

\(\frac{A}{2}=\frac{3^3}{1.2}-\frac{5^3}{2.3}+\frac{7^3}{3.4}-\frac{9^3}{4.5}+...+\frac{199^3}{99.100}\)

\(\frac{A}{2}=3^3\left(1-\frac{1}{2}\right)-5^3\left(\frac{1}{2}-\frac{1}{3}\right)+7^3\left(\frac{1}{3}-\frac{1}{4}\right)-...+199^3\left(\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{A}{2}=3^3-\frac{3^3+5^3}{2}+\frac{5^3+7^3}{3}-\frac{7^3+9^3}{4}+...+\frac{197^3+199^3}{99}-\frac{199^3}{100}\)

\(\frac{A}{2}=3^3-\frac{199^3}{100}-\left(16.2^2+12\right)+\left(16.3^2+12\right)-\left(16.4^2+12\right)+...+\left(16.99^2+12\right)\)

\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(3^2-2^2+5^2-4^2+7^2-6^2+...+99^2-98^2\right)\)

\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(2+3+4+5+...+98+99\right)\)

\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(99.50-1\right)\)

\(\Rightarrow A=16.99.100-\frac{199^3}{50}+22\) (đến đây bấm máy ra kết quả so sánh cũng được)

\(\Rightarrow A=\frac{2^3.100^2\left(100-1\right)-199^3}{50}+22\)

\(A=\frac{200^3-199^3-2.200^2}{50}+22\)

\(A=\frac{200^2+200.199+199^2-2.200^2}{50}+22\)

\(A=\frac{199^2-200^2+200.199}{50}+22\)

\(A=\frac{-199-200+200.199}{50}+22=\frac{199^2}{50}+18\)

\(A< \frac{199.200}{50}+18=814\)

Vậy \(A< 814\)

1 tháng 6 2018

b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)

\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)

\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)

\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)

\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)

\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)

Từ (1);(2)\(\Rightarrow0< D< 1\)

\(\Rightarrowđpcm\)

20 tháng 7 2020

a,\(C>0\)

\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)

\(\Rightarrow0< A< 1\)

\(\Rightarrow A\notinℤ\)

c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

Ta quy đồng 3 số đầu

\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)

\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)

\(1< E< 2\)

\(E\notinℤ\)

25 tháng 1 2017

a) \(\frac{x+1}{3}=\frac{x-2}{4}\)

=> (x+1).4 = (x - 2) . 3

=> 4x + 4 = 3x - 6

=> 4x - 3x = - 6 - 4

=> x = - 10

b) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)

\(\Rightarrow\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)

\(\Rightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}=\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}\)

\(\Rightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}-\frac{x+1}{12}\) = 0

\(\Rightarrow\left(x+1\right).\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)\)

\(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\ne0\) nên x + 1 =0

=> x = -1

c) Xem lại đề

26 tháng 1 2017

Xin ỗi bạn nha! Đoạn x+3 sửa lại thành x+32 nha bạn !!!

19 tháng 3 2020

\(A=\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{26}{7}-\frac{13}{11}+\frac{13}{23}}-\frac{\frac{3}{5}+\frac{3}{13}-0,9}{\frac{7}{91}+0,2-\frac{3}{10}}\)

\(A=\frac{155-5\left(\frac{2}{7}-\frac{1}{11}+\frac{1}{23}\right)}{403-13\left(\frac{2}{7}-\frac{1}{11}+\frac{1}{23}\right)}-\frac{\frac{3}{5}+\frac{3}{13}-\frac{9}{10}}{\frac{7}{91}+\frac{2}{10}-\frac{3}{10}}\)

\(A=\frac{155-5}{403-13}-\frac{3\left(\frac{1}{5}+\frac{1}{13}\right)-\frac{9}{10}}{\frac{7}{91}+\left(-\frac{1}{10}\right)}\)

\(A=\frac{5}{13}-\frac{\left(-\frac{9}{130}\right)}{\left(-\frac{3}{130}\right)}=\frac{5}{13}-\frac{\frac{9}{130}}{\frac{3}{130}}\)

\(A=\frac{5}{13}-\frac{9}{130}\cdot\frac{130}{3}\)

\(A=\frac{5}{13}-3=-\frac{34}{13}\)

\(B=\frac{30\cdot4^7\cdot3^{29}-5\cdot14^5\cdot2^{12}}{54\cdot6^{14}\cdot9^7-12\cdot8^5\cdot7^5}\)

\(B=\frac{30\cdot\left(2^2\right)^7\cdot3^{29}-5\cdot\left(2\cdot7\right)^5\cdot2^{12}}{54\cdot\left(2\cdot3\right)^{14}\cdot\left(3^2\right)^7-12\cdot\left(2^3\right)^5\cdot7^5}\)

\(B=\frac{30\cdot2^{14}\cdot3^{29}-5\cdot2^5\cdot7^5\cdot2^{12}}{54\cdot2^{14}\cdot3^{14}\cdot3^{14}-12\cdot2^{15}\cdot7^5}\)

\(B=\frac{30\cdot3^{29}-5\cdot2^{17}\cdot7^5}{54\cdot3^{28}-12\cdot2^{15}\cdot7^5}=\frac{30\cdot3-5\cdot2^2}{54-12}=\frac{5}{3}\)