Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đổi phân số thành / rồi tìm trên Google có đầy bài này rồi.
a, VT < 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/2007.2008
= 1-1/2+1/2-1/3+1/3-1/4+....+1/2007-1/2008 = 1-1/2008 < 1
=> ĐPCM
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}< 1\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}< 1\)
\(S=1-\frac{1}{50}< 1\)
\(S=\frac{49}{50}< 1\left(đpcm\right)\)
Ta có: 1/1500 = 1/1500
1/1001 > 1/1500
1/1002 > 1/1500
1/1003 > 1/1500 => 1/1001 + 1/1002 + 1/1003 + ... + 1/1499
. . . . . . . . . . . > 1/1500 + 1/1500 + 1/1500 + ... + 1/1500 (499 số hạng 1/1500)
1/1499 > 1/1500 > 499/1500
=> 1/1001 + 1/1002 + 1/1003 + ... + 1/1500 > 499/1500 + 1/1500 = 500/1500 = 1/3
Vậy 1/1001 + 1/1002 + 1/1003 + ... + 1/1500 > 1/3
k cho mình nha! Cảm ơn!
\(S=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)
\(S>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(S>\frac{1}{2}-\frac{1}{10}\)
\(S>\frac{4}{10}=\frac{2}{5}\)
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9.10}< S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3\cdot4}+...+\frac{1}{8.9}\)
=>\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}< S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{8}-\frac{1}{9}\)
=> \(\frac{1}{2}-\frac{1}{10}< S< 1-\frac{1}{9}\)
=> \(\frac{2}{5}< S< \frac{8}{9}\)(dpcm )
\(S=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}=\left(\frac{1}{5}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+...+\frac{1}{17}\right)\)
mà trong ngoặc đầu tiên thì giá trị lớn nhất là \(\frac{1}{5}\)
trong ngoặc thứ 2 giá trị lớn nhất là \(\frac{1}{10}\)
\(\Rightarrow S< \frac{1}{5}.5+\frac{1}{10}.8< 2\Leftrightarrow S< 2\)