Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...................+\dfrac{3}{n\left(n+1\right)}\)
\(\Rightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.............+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow S=1-\dfrac{1}{n+1}< 1\)
\(\Rightarrow S< 1\rightarrowđpcm\)
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{n.\left(n+1\right)}\)
\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...-\dfrac{1}{n+1}\)
\(S=1-\dfrac{1}{n+1}\)\(< 1\)
\(\Leftrightarrow S< 1\)
tik cho mik nhé
\(S=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{43\cdot46}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\)
\(S=1-\dfrac{1}{46}< 1\)
S= \(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{40\cdot43}+\dfrac{3}{43\cdot46}\)
S= \(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{42}-\dfrac{1}{46}\)
S= \(1-\dfrac{1}{46}\)
S= \(\dfrac{45}{46}\)
Mà \(\dfrac{45}{46}< 1\)
\(\Rightarrow S< 1\)
Vậy S < 1
=>S= 1- 1/4 + 1/4 -1/7 + 1/7 - 1/10 +...+ 1/n - 1/(n+3)
=>S= 1- 1/(n+3)
=>S + 1/(n+3) = 1
=>S<1
Ta có:
\(S=\dfrac{3}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\right)\)
\(S=1.\left(\dfrac{1}{1}-\dfrac{1}{46}\right)\)
\(S=1.\dfrac{45}{46}=\dfrac{45}{46}\)
Vì \(\dfrac{45}{46}< \dfrac{46}{46}\) nên \(\dfrac{45}{46}< 1\).
Vậy S < 1.
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{43.46}\)
\(S=\dfrac{3}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{43.46}\right)\)
Ta thấy:
\(\dfrac{3}{1.4}=1-\dfrac{1}{4};\dfrac{3}{4.7}=\dfrac{1}{4}-\dfrac{1}{7};\dfrac{3}{7.10}=\dfrac{1}{7}-\dfrac{1}{10};\)
\(...;\dfrac{3}{43.46}=\dfrac{1}{43}-\dfrac{1}{46}\)
\(\Rightarrow S=1\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{43}-\dfrac{1}{46}\right)\)
\(\Rightarrow S=1\left(1-\dfrac{1}{46}\right)\)
\(\Rightarrow S=1.\dfrac{45}{46}=\dfrac{45}{46}\)
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{43.46}\\ S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\\ S=1-\dfrac{1}{46}< 1\)
Vậy S < 1 (đpcm)
a) \(4,5:\left[\left(\dfrac{9-10}{6}\right)-\dfrac{9}{5}+\dfrac{12}{5}\right]-\dfrac{1}{7}\)
\(=4,5:\left(\dfrac{-1}{6}-\dfrac{-3}{5}\right)-\dfrac{1}{7}\)
=\(4,5:\left(\dfrac{-5+18}{30}\right)-\dfrac{1}{7}\)
=\(4,5:\dfrac{13}{30}-\dfrac{1}{7}\)=\(\dfrac{135}{13}-\dfrac{1}{7}=\dfrac{932}{91}\)
b) \(\dfrac{13}{3}:\left(\dfrac{1}{4}+\dfrac{5}{4}\right)-\dfrac{20}{3}\)
=\(\dfrac{13}{3}.\dfrac{2}{3}-\dfrac{20}{3}\)=\(\dfrac{26}{9}-\dfrac{20}{3}=\dfrac{26}{9}-\dfrac{60}{9}=\dfrac{-34}{9}\)
c) \(5.\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+.....+\dfrac{1}{91.94}\right)\)
\(=5.\left[\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{91}-\dfrac{1}{94}\right)\right]\)
\(=5.\left[\dfrac{1}{3}.\left(1-\dfrac{1}{94}\right)\right]\)
=\(5.\left(\dfrac{1}{3}.\dfrac{93}{94}\right)\)
\(=5.\dfrac{31}{94}=\dfrac{155}{94}\)
Chúc bạn học tốt
- S = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
- S = \(1-\frac{1}{n+3}\)
\(\Rightarrow\) S < 1 ( đpcm )
=> S = ( 1 -\(\frac{1}{4}\)) + ( \(\frac{1}{4}\)- \(\frac{1}{7}\)) +(\(\frac{1}{7}\)- \(\frac{1}{10}\)) +.....+ (\(\frac{1}{n}\)- \(\frac{1}{n+3}\))
=> S = 1 - \(\frac{1}{4}\)+\(\frac{1}{4}\)- \(\frac{1}{7}\)+ \(\frac{1}{7}\)- \(\frac{1}{10}\)+......+ \(\frac{1}{n}\)- \(\frac{1}{n+3}\)
=> S = 1 - \(\frac{1}{n+3}\)
vậy S = 1- \(\frac{1}{n+3}\)
S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1
=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1
=1-1/N+1
->S<1
NHA!
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{n\left(n+3\right)}\)
\(\Rightarrow S=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{\left(n+3\right)-n}{n\left(n+3\right)}\)
\(\Rightarrow S=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{n+3}{n\left(n+3\right)}-\dfrac{n}{n\left(n+3\right)}\)
\(\Rightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{n}-\dfrac{1}{n+3}\)
\(\Rightarrow S=1-\dfrac{1}{n+3}< 1\Rightarrow S< 1\)
Vậy S < 1