Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AE/AD=9/6=3/2
AB/AC=8/12=2/3
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
Do đó:ΔADE đồng dạng với ΔABC

a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
b: Xét ΔBAD có MN//AD
nên MN/AD=BM/BA(1)
Xét ΔBCA có MH//AC
nên MH/AC=BM/BA(2)
Từ (1) và (2) suy ra MN/AD=MH/AC
hay MN/MH=AD/AC

Tự vẽ hình nhé Nữ hoàng sến súa là ta
Lấy K là trung điểm của AB. Nối K với E,K và C. Từ đó ta thấy D là trung điểm của AK
Do \(KEKE\)là đường trung bình tam giác \(ABCABC\)nên KE // BCKE // BC và KE=12BCKE=12BC
Lại có \(DEDE\)là đường trung bình tam giác \(AKCAKC\)nên DE // KCDE // KC
Ta thấy \(\Delta KEC\)và \(\Delta FCE\)có:
+ Chung CE
+ \(\widehat{KEC}=\widehat{FCE}\)( so le trong )
+ \(\widehat{ADE}=\widehat{ACK}\)( đồng vị ) ( mà \(\widehat{ADE}=\widehat{CEF}\Rightarrow\widehat{CEF}=\widehat{ACK}\))
\(\Rightarrow\Delta KEC=\Delta FCE\)( g.c.g ) \(\Rightarrow CF=EK\)
Mà \(EK=\frac{1}{2}BC\Rightarrow CF=\frac{1}{2}BC\)
Vậy \(CF=\frac{1}{2}BC\left(đpcm\right)\)

Áp dụng định lí Menelaus :
\(\frac{AE}{CE}\).\(\frac{AD}{BD}\).\(\frac{BF}{CF}\)= 1
Mà AE = CE, AD = 1/3BD
=> BF/CF = 3
=> CF = 1/2 BC

A B C D E
\(\frac{S\Delta ADE}{S\Delta ABC}=\frac{AD}{AE}^2=\frac{AC}{AB}^2\)
Theo gt: AD/AB=2/3; AE/AC=1/4
Mà AE/AB=AD/AC
<=> 1/4AC/AB=2/3AB/AC
<=> 1/4AC^2=2/3AB^2
<=> AC^2/AB^2=1/6
Tỉ số diện tích là 1/6

a) C/M DE//BC và ΔADE∼ΔABC
Ta có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) (do \(\dfrac{4}{12}=\dfrac{5}{15}=\dfrac{1}{3}\))
⇒ DE//BC (ĐL Ta-lét đảo)
⇒ ΔADE∼ΔABC
b) Tứ giác BDEF hình gì
Ta có DE//BF (do DE//BC:c/ma)
EF//BD (do EF//AB:gt)
Vậy BDEF là hình bình hành
c) C/M ΔCEF∼ΔEAD
Ta có \(\widehat{ADE}=\widehat{ABC}\) (đồng vị do DE//BC)
Lại có \(\widehat{EFC\:}=\widehat{ABC}\) (đồng vị do EF//AB)
⇒\(\widehat{ADE}=\widehat{EFC\:}\)
Và \(\widehat{BAC}=\widehat{FEC}\) (đồng vị do EF//AB)
Vậy ΔCEF∼ΔEAD (g-g)

hình bạn tự vẽ nhá
a) Xét tam giác BAH và tam giác ABC , có :
A^ = H^ = 90O
B^ : góc chung
=> tam giác HAB ~ tam giác ACB ( g.g)
b) ADĐL pitago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
=> 122 + 166 = BC2
=> BC2 = 400
=> BC = 20 cm
Vì tam giác ACB ~ tam giác HAB , nên ta có :
\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)
=> \(\dfrac{AH}{16}\)=\(\dfrac{12}{20}\)
=> AH = 9,6 cm
Ta có : AD là phân giác của A^
=> \(\dfrac{AB}{AC}\)= \(\dfrac{BD}{DC}\)
=> \(\dfrac{12}{16}\)=\(\dfrac{BD}{20-BD}\)
=> 16BD = 240 - 12BD
=> 28BD = 240
=> BD = 8,5 cm
hình bạn tự vẽ ak nghen!!!
a)
Xét tam giác ABC và HBA có:
\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{BHA}=90^o\\chung\widehat{B}\end{matrix}\right.\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)
có không hiểu chỗ nào thì hỏi lại nhoa:33
theo đề ta sẽ có : \(S_{ABC}=\dfrac{AB.AC}{2}=20\left(m^2\right)\)(1)
thì tương tự ta sẽ có : \(S_{ADE}=\dfrac{AD.AE}{2}=..\)
mà \(AD=\dfrac{1}{3}AB;AE=\dfrac{3}{5}AC\)
thay vào (1) ta có : \(S_{ADE}=\dfrac{\dfrac{1}{3}AB.\dfrac{3}{5}AC}{2}=....\)
cũng từ (1) ta suy ra được : AB . AC = 40 (m)
vậy giờ ta có : \(S_{ADE}=\dfrac{\dfrac{1}{5}.40}{2}=4\left(m^2\right)\)
Bài của mình cũng giống như này :