K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

S=abc+bca+cab

=100a+10b+c+100b+10c+a+100c+10a+b

=111a+111b+111c=111.(a+b+c)=3.37.(a+b+c)

 Vì S là 1 SCP mà 37 là số nguyên tố=>S chia hết cho 37.nhưng a+b+c ko chia hết cho 37.

Vậy S ko là 1 SCP 

4 tháng 2 2016

 S=abc+bca+cab= 
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)= 
1011*(a+b+c) =3*337*(a+b+c) 

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*) 

Vậy không tồn tại số chính phương S

10 tháng 11 2018

Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1

Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.

DẠ EM CHỊU

13 tháng 3 2017

em cũng chịu

 luôn

15 tháng 3 2019

Bạn ghi thế khó hiểu quá mk sửa lại nhé.

\(A=1+3+5+7+...+\left(2n-1\right)\)

\(\Rightarrow\) Số số hạng của A là:

             \(\frac{\left(2n-1\right)-1}{2}+1=n\) ( số hạng )

\(\Rightarrow1+3+5+7+...+\left(2n-1\right)=\frac{\left(2n-1+1\right).n}{2}=n^2\) là một số chính phương .

Vậy \(A=1+3+5+7+...+\left(2n-1\right)\) với mọi n thuộc N* luôn là số chính phương.

21 tháng 7 2015

ta có : abc + bca + cab = 111a + 111b + 111c 

                                         = 111 . (a+b+c)

                                         = 3. 37 . (a+b+c) 

Để S là số chính phương thì a+b+c = 3. 37 . k^2. 

Mà a+ b+ c < hoặc = 27 nên : 

                      Vay tog S ko phai la so chih phuong