Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách này cũng đúng nhưng có cách khác nhanh hơn
S = ( 5 + 5^2 + 5^3 + 5^4 ) + .....
Gộp 4 số liên tiếp lại rồi C/M
Chúc học tốt
(5+5^4)+(5^2+5^5)+(5x^3+5x^6)+.....+(5^93+5^96)
5(1+125)+5^2(1+125)+5^3(1+125)+.....+5^93(1+125)
126(5+5^2+5^3+.........+5^93)
b) 5
khong sai de dau ban
S= (5+52+53+54) + .....+(52007+52008+52009+52010)
S=(5+52+53+54)+....+52006(5+52+53+54)
ma 5+52+53+54 chia het cho 65 nen S cung chia het cho 65
từ (1) và (2)
=> S ⋮5
mình nghĩ hơi thừa chỉ cần từ (1) là đủ rồi
nên đánh (2) vào"=>S⋮5"
Để khi chứng tỏ thì nói "từ (1) và (2) => S ⋮ 65"
1) Ở (1) vô lý nha bạn, tổng S đều có số hạng 5 là sao? số hạng có tận cùng là 5 chứ.
Ok, mik nhận xét thế thôi nhé. Cách trình bày của bạn khá chặt chẽ. Mà bạn viết vào vở thì sử dụng kí hiệu toán học ý, trong toán đừng viết chữ nhiều quá. ( VD: chia hết cho)
Số số hạng của dãy S là :(2004-1):1+1=2004
Ta chia 2004 số hạng thành 501 nhóm mỗi nhóm 4 số và đătj thừa số chung như sau:
(5+5^2+5^3+5^4)+........+(5^2001+5^2002+5^2003+5^2004)
=> (5+5^2+5^3+5^4)+........+5^2001*(5+5^2+5^3+5^4)
=>780+..........+5^2001*780
=780*(1+.........+5^2001)
Vì 780 chia hết cho 65
vậy S chia hết cho 65
Cung minh chia het cho 126
S=(5+5^2+5^3+5^4+5^5+5^6)+(5^7+5^8+5^9+5^10+5^11+5^12)+...+(5^1999+5^2000+5^2001+2002+2003+2004)
S=(5+5^3)+(5^2+5^5)+(5^3+5^6)+...+(5^2000+5^2003)+(5^2001+5^2004)
S=5.(1+125)+5^2.(1+125)+5^3.(1+125)+...+5^2000.(1+125)+5^2001.(1+125)
S=5.126+5^2.126+5^3.126+...+5^2000.126+5^2001.126
S=126.(5+5^2+5^3+...+5^2000+5^2001) chia het cho 126
Chung minh chia het cho 65 tuong tu nhom 4 so roi dat thua so chung.
Ta có: S = 5 + 52 + 53 + ... + 52004
S = ( 5 + 53) + ( 52+ 54) +...+ ( 52002 + 52004)
S = ( 5 + 53) + 5 ( 5 + 53) + ...+ 52001 ( 5 + 53)
S = 2 .65 + 5.2.65 + ...+ 52001.2.65
=> S chia hết cho 65
Chắc là chia hết cho 156 chứ 126 mình không làm được
s chia hết cho 5 nhưng ko chia hết cho 25
con chia hết cho 65 chỉ cần cm s chia hết cho 13 roi gộp 1 số 1 phân tích ra
S = 5 + 52 + 53 + ... + 52012
= (5 + 52 + 53 + 54) + (55 + 56 + 57 + 58) + ... + (52009 + 52010 + 52011 + 52012)
= 65 . 12 + 54.(5 + 52 + 53 + 54) + ... + 52008.(5 + 52 + 53 + 54)
= 65 .12 + 54 . 65 . 12 + ... + 52008 . 65 .12
= 65.12.(1 + 54 + ... + 52008) chia hết cho 65
a)\(\overline{abcabc}=1001\cdot\overline{abc}=...\)chưa chứng minh được chia hết cho 3, bạn kiểm tra lại đề nhé.
Chắc là đề cho \(\overline{abc}⋮3\)
b)\(S=5+5^2+5^3+...+5^{2004}=\left(5^1+5^4+5^2+5^5+5^3+5^6\right)+...+\left(5^{1999}+..+5^{2001}+5^{2004}\right)\)
Cứ 2 số hạng liền kề nhau trong tổng trên đều chia hết cho 5+125=130, tức là đều chia hết cho 65.
Còn chứng minh chia hết cho 125 thì mình thấy hơi lạ, mình không làm được.
Chúc bạn học tốt!
xét 6 số đầu tiên của dãy ta có:
5+5^2+5^3+5^4+5^5+5^6
=(5+5^4) + (5^2+5^5) + (5^3+5^6)
=5(5^3+1) + 5^2(5^3+1) + 5^3(5^3+1)
Mà 5^3+1=126 chia hết cho 126
Do đó tổng 6 số hạng đầu tiên chia hết cho 6
Bằng phép nhóm tương tự ta có tổng của 6 số hạng tiếp theo (5^7 +...+5^12) chia hết cho 126,........
Từ trên ta có nhận xét cứ 6 số hạng liên tiếp nhau, dãy 2 kế tiếp dãy 1 thì ta được 1 số chia hết cho 126
Như vậy tổng trên chia hết cho 126 khi số các số hạng của nó phải chia hết cho 6
Mà ta có tổng trên có tất cả là 2010 số hạng và 2010 chia hết cho 6, 2010:6=335
Do đó tổng đã cho chia hết cho 126