Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=5+5^2+5^3+5^4+...+5^{2012}\)
\(S=\left(5+5^3\right)+\left(5^2+5^4\right)+...+\left(5^{2010}+5^{2012}\right)\)
\(S=\left(5+5^3\right)+5\left(5+5^3\right)+...+5^{2009}\left(5+5^3\right)\)
\(S=130+5\cdot130+...+5^{2009}\cdot130\)
\(S=65\cdot2+5\cdot65\cdot2+...+5^{2009}\cdot65\cdot2\)
\(S=65\left(2+5\cdot2+...+5^{2009}\cdot2\right)⋮65\) (đpcm)
=))
/vip/minan_3712
/vip/ngoclinh
/vip/muonduochoc
/vip/khanhhay2002@gmail.com
mấy pạn ơi giúp mk với
ta có : 5S = 5\(^2\)+5\(^3\)+5\(^4\)+..........+5\(^{2007}\)
5S - S = (5\(^2\)+5\(^3\)+5\(^4\)+.......+5\(^{2007}\))-(5+5\(^2\)+5\(^3\)+...+5\(^{2006}\))
4s=5\(^{2007}\)-5
vậy S=52002
S=(5+5\(^4\))+(5\(^2\)+5\(^5\))+(5\(^3\)+5\(^6\))+....+(5\(^{2003}\)+5\(^{2006}\))
biến đổi được S=126.(5+5\(^2\)+5\(^3\)+...+5\(^{2003}\))
suy ra : S chia hết cho 126
\(S=5+5^2+5^3+..+5^{2008}\)
\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...\left(5^{2003}+5^{2004}+5^{2005}+5^{2006}+5^{2007}+5^{2008}\right)\)
\(S=5.\left(1+5+25+125+625+3125\right)+...+5^{2003}.\left(1+5+25+125+625+3125\right)\)
\(S=5.3906+...+5^{2003}.3906\)
\(S=3906.\left(5+...+5^{2003}\right)\)chia hết cho 126
=> S chia hết cho 3906
Ủng hộ mk nha !!! ^_^
\(S=5+5^2+5^3+..+5^{2008}\)
\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...\left(5^{2003}+5^{2004}+5^{2005}+5^{2006}+5^{2007}+5^{2008}\right)\)
\(S=5.\left(1+5+25+125+625+3125\right)+...+5^{2003}.\left(1+5+25+125+625+3125\right)\)
\(S=5.3906+...+5^{2003}.3906\)
\(S=3906.\left(5+...+5^{2003}\right)\)chia hết cho 126
=> S chia hết cho 3906
\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3-\frac{5}{n-1}\)
=>n-1 \(\in\) Ư(5) = {-5;-1;1;5}
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
Vậy n = {-4;0;2;6}
S = 5+52+53+...+52006
5S = 52+53+54+...+52007
5S - S = (52+53+54+...+52007) - (5+52+53+...+52006)
4S = 52007 - 5
S = \(\frac{5^{2007}-5}{4}\)
https://olm.vn/hoi-dap/question/357592.html dựa vao mà làm