K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2021

\(S=5+5^2+5^3+5^4+...+5^{57}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{55}+5^{56}+5^{57}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{55}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+...+5^{55}.31\)

\(=31\left(5+5^4+..+5^{55}\right)⋮31\)

Vậy:..

Hình như đề sai rồi bạn!

14 tháng 1 2021

đúng đề đấy ạ!

13 tháng 1 2021

 \(S=5+5^2+5^3+5^4+...+5^{57}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{55}+5^{56}+5^{57}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(5+1+5^2\right)+...+5^{55}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+...+5^{55}.31\)

\(=31\left(5+5^4+...+5^{55}\right)⋮31\)

Vậy:.............

15 tháng 1 2017

S=5+52+53+54+...+52016

=(5+52+53)+(54+55+56)+...+(52014+52015+52016)

=5(1+5+52)+54(1+5+52)+...+52014(1+5+52)

=5.31+54.31+...+52014.31

=31(5+54+...+52014)

Vì 31\(⋮\)31 nên 31(5+54+...+52014)

Vậy S \(⋮\) 31

15 tháng 1 2017

S = 5 + 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + .... + 5 ^ 2016 ( co 2016 số hạng )

S = ( 5 + 5 ^ 2 + 5 ^ 3 ) + ( 5 ^ 4 + 5 ^ 5 + 5 ^ 6) + ..... + ( 5 ^ 2014 + 5 ^ 2015 + 5 ^ 2016 )  Co 2016 : 3 = 672 nhom

S = 5 x ( 1 + 5 + 5 ^ 2 ) + 5 ^ 4 x (  1 + 5 + 5 ^ 2 ) +...... + 5 ^ 2014 x ( 1  + 5 + 5 ^ 2 )

S = 5 x 31 + 45 ^ 4 x 31 + ... + 5 ^ 2014 x 31

S = ( 5 + 5 ^ 4 + .... + 5 ^ 2014 ) x 31

VÌ 31 chia hết cho 31 nên ( 5 + 5 ^ 4 +.... + 5 ^ 2014 ) x 31 chia hết cho 31, hay B chia hết cho 31

29 tháng 10 2017

1/5 S = 1+5+5^2+...+5^2012

         =1(1+5+5^2)+5^3(1+5+5^2)+...+5^2010(1+5+5^2)

        mà 1+5+5^2=31=>1+5+5^2 chia hết 31

        => mổi số hạng của 1/5 S chia hết 31

       => S chia hết 31

Học chuyên đó ak. bài zễ thế nài mà ko bt làm ntn hả

18 tháng 11 2017

ta có : S=5+5^2+5^3+5^4+......+5^2013  ( có 2013 số hạng )

           S=(5+5^2+5^3)+(5^4+5^5+5^6)+.............+(5^2011+5^2012+5^2013)   ( có 671 nhóm)

           S= 5.(1+5+5^2)+5^2.(1+5+5^2)+........+5^2011.(1+5+5^2)

           S=(5+5^2+.....+5^2011).31

            S chia hết cho 31                

10 tháng 11 2016

a) S = 5 + 52 + 53 + ... + 5100

=> S = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )

=> S = 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 599( 1 + 5 ) 

=> S = 5 . 6 + 53 . 6 + ... + 599 . 6

=> S = ( 5 + 53 + ... + 599 ) . 6 chia hết cho 6

=> S chia hết cho 6

b) S1 = 2 + 22 + 23 + ... + 2100

=> S1 = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )

=> S1 = 2( 1 + 2 + 22 + 23 + 24 ) + ... +296( 1 + 2 + 22 + 23 + 24 )

=> S1 = 2 . 31 + ... + 296 . 31

=> S1 = ( 2 + ... + 296 ) . 31 chia hết cho 31

=> S1 chia hết cho 31

c) S2 = 165 + 215

=> S2 = ( 24 )5 + 215

=> S2 = 220 + 215

=> S2 = 220( 1 + 25 )

=> S2 = 220 . 33 chia hết cho 33

=> S2 chia hết cho 33

15 tháng 10 2018

dài quá 

8 tháng 11 2023

S = 5⁰ + 5¹ + 5² + ... + 5²⁰²³

= (5⁰ + 5¹) + (5² + 5³) + ... + (5²⁰²² + 5²⁰²³)

= 6 + 5².(1 + 5) + ... + 5²⁰²².(1 + 5)

= 6 + 5².6 + ... + 5²⁰²².6

= 6.(1 + 5² + ... + 5²⁰²²) ⋮ 6

Vậy S ⋮ 6

--------

Số số hạng của S:

2023 - 0 + 1 = 2024 (số)

2024 : 3 dư 2 nên khi nhóm các số hạng của S theo nhóm 3 thì dư 2 số hạng

Ta có:

S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³

= 5⁰ + 5¹ + (5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷) + ... + (5²⁰²¹ + 5²⁰²² + 5²⁰²³)

= 6 + 5².(1 + 5 + 5²) + 5⁵.(1 + 5 + 5²) + ... + 5²⁰²¹.(1 + 5 + 5²)

= 6 + 5².31 + 5⁵.31 + ... + 5²⁰²¹.31

= 6 + 31.(5² + 5⁵ + ... + 5²⁰²¹)

Do 31.(5² + 5⁵ + ... + 5²⁰²¹) ⋮ 31

6 + 31.(5² + 5⁵ + ... + 5²⁰²¹) chia 31 dư 6

Vậy S chia 31 dư 6

------------

Sửa đề:

Tìm số tự nhiên n để 4S - 25² = -1

S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³

5S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰²⁴

⇒ 4S = 5S - S

= (5 + 5² + 5² + 5³ + ... + 5²⁰²⁴) - (1 + 5¹ + 5² + 5³ + ... + 5²⁰²³)

= 5²⁰²⁴ - 1

⇒ 4S - 25²ⁿ = -1

⇒ 5²⁰²⁴ - 1 - (5²)²ⁿ = -1

⇒ 5²⁰²⁴ - 5⁴ⁿ = -1 + 1

⇒ 5⁴ⁿ = 5²⁰²⁴

⇒ 4n = 2024

⇒ n = 2024 : 4

⇒ n = 506

DT
8 tháng 11 2023

\(S=\left(5^0+5^1\right)+\left(5^2+5^3\right)+...+\left(5^{2022}+5^{2023}\right)\\ =6+5^2\left(1+5\right)+...+5^{2022}\left(1+5\right)\\ =6+5^2.6+...+5^{2022}.6\\ =6\left(1+5^2+...+5^{2022}\right)⋮6\)

\(S=\left(5^0+5^1+5^2\right)+...+\left(5^{2021}+5^{2022}+5^{2023}\right)\\ =31+...+5^{2021}\left(1+5+5^2\right)\\ =31\left(1+...+5^{2021}\right)⋮31\)

=> Dư : 0

\(5S=5^1+5^2+5^3+5^4+...+5^{2024}\\ =>5S-S=4S=5^{2024}-1\)

Mà : \(4S-25^{2n}=1\\ =>5^{2024}-1-25^{2n}=1\\ =>5^{2024}-25^{2n}=2\)

Bạn xem lại đề nhé

 

8 tháng 12 2016

s chia hết cho 25 vì trong thừa số của s có 25 đó là  5^2

s không chia hết cho 31 vì trong thừa số của s không có 31