Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = 4.111...1 + 2.111...1 + 8.111...1 + 7
2n c/s 1 n + 1 c/s 1 n c/s 1
Đặt 111...1 (n c/s 1) = a => 999..9 (n c/s 9) = 9a
=> 999...9 + 1 = 9a + 1 => 10n = 9a + 1
=> 111...1 (2n c/s 1) = 111...1000..0 + 111...1 = 111...1.10n + 111...1 = a.(9a + 1) + a = 9a2 + 2a 111...1 (n + 1 c/s 1)
= 111...10 + 1 = 111...1.10 + 1 = a.10 + 1 = 10a + 1
Vậy C = 4.(9a2 + 2a) + 2.(10a + 1) + 8.a + 7 = 36a2 + 36a + 9 = (6a + 3)2 = (666..6 + 3)2 = 666...692 (n - 1 c/s 6)
Vậy C là số chính phương
C = 4.111...1 + 2.111...1 + 8.111...1 + 7
2n c/s 1 n + 1 c/s 1 n c/s 1
Đặt 111...1 (n c/s 1) = a => 999..9 (n c/s 9) = 9a => 999...9 + 1 = 9a + 1 => 10n = 9a + 1
=> 111...1 (2n c/s 1) = 111...1000..0 + 111...1 = 111...1.10n + 111...1 = a.(9a + 1) + a = 9a2 + 2a
111...1 (n + 1 c/s 1) = 111...10 + 1 = 111...1.10 + 1 = a.10 + 1 = 10a + 1
Vậy C = 4.(9a2 + 2a) + 2.(10a + 1) + 8.a + 7 = 36a2 + 36a + 9 = (6a + 3)2 = (666..6 + 3)2 = 666...692 (n - 1 c/s 6)
Vậy C là số chính phương
Thay \(a=444...4;\) \(b=222...2;\) \(c=888...8\) vào biểu thức ta được
\(C=444...4+222...2+888...8+7\)
\(\Leftrightarrow C=4\left(111...1\right)+2\left(111...1\right)+8\left(111...1\right)+7\)
................2n c/s 4.........n+1 c/s 2..........n c/s 8...........
Đặt 111.11(n c/s 1) \(=a\)
\(\Rightarrow\)999...9(n c/s 9) \(\) \(=9a\Rightarrow999...9+1=9a+1\Rightarrow10^n=9a\)
Đặt 111...1(2n c/s 1) \(=111...1000..0+111...1=111...1\times10^n+111...1=a\left(9a+1\right)+a=9a^2+2a\)
Đặt 111...1(n+1 c/s 1)
\(=111...10+1=111...1\times10+1=10a+1\)
\(\Rightarrow C=4\left(9a^2+2a\right)+2\left(10a+1\right)+8a+7=36a^2+36a+9=\left(6a+3\right)^3=\left(666...6+3\right)^2=666...69^2
\)(n-1 c/s 6)
Vậy C là một chính phương
(má ơi làm bài này mệt như j í ><)
A = 111...1000...0 + 111...1 - 222...2
(n cs 1)(n cs 0) (n cs 1) (n cs 2)
\(A=111...1\cdot10^n+111...1-222...2\)
(n cs 1) ( n cs 1 ) ( n cs 2 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> A = K( 9k + 1 ) + K - 2K
= 9K^2 + K + K - 2K
= 9K^2 = (3K)^2
=> A là một số chính phương
B = 111...1000...0 + 111...1 + 444...4 + 1
(n cs 1)(n cs 0) (n cs 1) (n cs 4)
\(\Rightarrow B=111...1\cdot10^n+111...1+444...4+1\)
( n cs 1 ) ( n cs 1 ) ( n cs 4 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> B = K( 9K + 1 ) + K + 4K + 1
= 9K^2 + 6K + 1
= ( 3K + 1 ) ^2
=> B là một số chính phương
A=4x111...11 (2n chữ số 1) mà \(111...11=\frac{10^{2n}-1}{9}\Rightarrow A=4.\frac{10^{2n}-1}{9}\)
Tương tự \(B=8.\frac{10^n-1}{9}\)
\(A+2B=4.\frac{10^{2n}-1}{9}+16.\frac{10^n-1}{9}=\frac{4.10^{2n}-4+16.10^n-16}{9}\)
Đề bài sai thì phải
\(S=\frac{4\left(10^{2014}-1\right)}{9}+\frac{2\left(10^{1008}-1\right)}{9}+\frac{8\left(10^{1007}-1\right)}{9}+7\)
\(S=\frac{4.10^{2014}}{9}-\frac{4}{9}+\frac{2.10^{1008}}{9}-\frac{2}{9}+\frac{8.10^{1007}}{9}-\frac{8}{9}+7\)
\(S=\frac{4.10^{2014}}{9}+\frac{2.10.10^{1007}}{9}+\frac{8.10^{1007}}{9}+\frac{49}{3}\)
\(S=\left(\frac{2.10^{1007}}{3}\right)^2+2.\frac{2.10^{1007}}{3}.\frac{7}{3}+\left(\frac{7}{3}\right)^2\)
\(S=\left(\frac{2.10^{1007}}{3}+\frac{7}{3}\right)^2\) là số chính phương