Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)
Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2
1/9 + 1/10 + 1/11 <3x1/9 = 1/3
1/12 + 1/13 +1/14 < 3x1/12 = 1/4
1/15 + 1/16 < 3 x 1/15 = 1/5
Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}< 1\)
Vậy \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}< 1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\left(1\right)\)
\(S=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\left(2\right)\)
từ (1) và (2) => đpcm
bạn ơi dòng đầu tiên bạn tách sai rồi theo minh thì không phải thế đâu
CHỊU BN