\(3^0+3^1+3^2+...+3^{99}\)

CMR: S chia hết cho 4

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

S = 1 + 3 + 32 + ... + 399

   = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 398 + 399 )

   = 1.4 + 32(1+3) + ... + 398(1+3)

   = 4.(1+32+...+398) chia hết cho 4

29 tháng 10 2015

=> S = 1 + 31 + 32 + ........ + 399

= ( 1 + 31 ) + ( 32 + 33 ) + .......... + ( 398 + 399 )

= 4 + 32( 1 + 31 ) + ......... + 398( 1 + 31 )

= 4 . 32 . 4 + .......... + 398 . 4

= 4( 1 + ............ + 398 ) chia hết cho 4

=> ĐPCM

12 tháng 11 2015

3n+2 - 2n+2 +3n - 2n = 3n . 32 - 2n. 22 +3n -2n

                             = 3n(32+1) - (2n.22 +2n)

                             =3n . 10 - 2n .5

                             =3n.10 - 2n-1 .2 .5

                             = 3n.10 - 2n-1 .10

                             = 10(3n - 2n-1)

vì 10 chia hết cho 10 nên 10(3n-2n-1) chia hết cho 10

                         =>  3n+2 - 2n+2 +3n -2n chia hết cho 10

                           

12 tháng 11 2015

Ai làm nhanh nhất mình sẽ **** xin cảm ơn các bạn mình đang cần gấp

 

2 tháng 11 2019

\(\Rightarrow\left\{{}\begin{matrix}30+5a=0\\60+4b=0\\c-21=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5a=-30\\4b=-60\\c=0+21\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-6\\b=-15\\c=21\end{matrix}\right.\)

\(\Rightarrow a+b+c=\left(-6\right)+\left(-15\right)+21\)

\(\Rightarrow a+b+c=0\left(đpcm\right).\)

Chúc bạn học tốt!

20 tháng 6 2016

Câu 1

4 p/s   cộng thêm 1,p/s cuối trừ 4 rồi nhóm vs nhau

d/s la x= - 329

Câu   2

NHân vs 7 thành 7S rồi rút gọn là đc

 

20 tháng 6 2016

Câu 1 :

a) \(\Leftrightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Rightarrow\left(x+329\right).\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}\ne0\) \(\Rightarrow x+329=0\Rightarrow x=-329\)

22 tháng 10 2017

đặt A = 3 + 32 + 33 + 34 + ... + 399 + 3100

A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )

A = 3 ( 1 + 3 ) + 33 ( 1 + 3 ) + ... + 399 ( 1 + 3 )

A = 3 . 4 + 33 . 4 + ... + 399 . 4

A = 4 . ( 3 + 33 + ... + 399 ) \(⋮\)4