K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

S=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^999+3^1000+3^1001)

S=1x(1+3+9)+3^3x(1+3+9)+...+3^999x(1+3+9)

S=1x13+3^3x13+...+3^999x13

S=13x(1+3^3+...+3^999)

Vậy S chia hết cho 13

S=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^999+3^1000+3^1001)

S=1x(1+3+9)+3^3x(1+3+9)+...+3^999x(1+3+9)

S=1x13+3^3x13+...+3^999x13

S=13x(1+3^3+...+3^999)

Vậy S chia hết cho 13

6 tháng 7 2015

Ta có : S = 3 + 32 + 33 + ....+ 32007

\(\Rightarrow S=\left(3+3^2+3^3\right)+....+\left(3^{2005}+2^{2006}+2^{2007}\right)\)

\(\Rightarrow S=3\left(1+3+3^2\right)+.....+3^{2005}\left(1+3+3^2\right)\)

\(\Rightarrow S=3\cdot13+....+3^{2005}\cdot13\)

\(\Rightarrow S=13\cdot\left(3+....+2005\right)\)

\(\Rightarrow S\) chia hết cho 13

đúng nha !!!

18 tháng 10 2015

\(S=\left(3+3^{3+3^3}\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\)

\(S=39.1+39.3^3+....+39.3^{96}=>S=39\left(1+3^3+3^6+.....+3^{96}\right)\)

Vậy S chia hết cho 39

29 tháng 11 2015

\(S=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(=3.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)

\(=3.\left(1+3+9+27\right)+...+3^{97}.\left(1+3+9+27\right)\)

\(=3.40+...+3^{97}.40\)

\(=40.\left(3+...+3^{97}\right)\)

\(=5.8.\left(3+...+3^{97}\right)\text{chia hết cho 5}\)

=> S chia hết cho 5 =>đpcm.

29 tháng 11 2015

S=3+3^2+3^3+....+3^100

S=(3+3^2+3^3+3^4)+....+(3^97+3^98+3^99+3^100)

S=1(3+3^2+3^3+3^4)+...+3^96.(3+3^2+3^3+3^4)

S=1.120+...+3^96.120

S=120(1+...+2^96)

S=5.24(1+...+2^96) chia hết cho 5

25 tháng 7 2023

\(S=3+3^2+3^3+3^4+...+3^9\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)

\(S=3\left(1+3+9\right)+3^4\left(1+3+9\right)+3^7\left(1+3+9\right)\)

\(S=3\cdot13+3^4\cdot13+3^7\cdot13\)

\(S=13\left(3+3^4+3^7\right)\)

\(S=13\cdot3\left(1+3^3+3^6\right)\)

\(S=39\cdot\left(1+3^3+3^6\right)\)

\(\Rightarrow S\) ⋮ 39

25 tháng 7 2023

Để chứng minh rằng s = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 7 + 3 mũ 8 + 3 mũ 9 chia hết cho (-39), ta sử dụng công thức tổng cấp số cộng:

S = a(1-r^n)/(1-r)

Trong đó:

S là tổng của cấp số cộng
a là số hạng đầu tiên của cấp số cộng
r là công bội của cấp số cộng
n là số lượng số hạng trong cấp số cộng
Áp dụng công thức trên, ta có:

a = 3
r = 3
n = 9
S = 3(1-3^9)/(1-3) = 29,523

Ta thấy rằng S không chia hết cho (-39), do đó giả thiết ban đầu là sai.

26 tháng 1 2016

tick nhé ❤️

26 tháng 1 2016

S=1-3+3^2-3^3+...+3^98-3^99

=(1-3+3^2-3^3)+...+(3^96-3^97+3^98-3^99)

=-20+...+3^96(1-3+3^2-3^3)

=-20(1+...+3^96) chia hết cho -20

S=1-3+3^2-3^3+...+3^98-3^99

3S=3-3^2+3^3-3^4+...+3^99-3^100

3S+S=3-3^2+3^3-3^4+...+3^99-3^100+1-3+3^2-3^3+...+3^98-3^99

4S=-3^100+1

S=(-3^100+1):4