Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,S=1+3+32+...+360
3S=3+32+33+...+361
3S-S=(3+32+33+...+361)-(1+3+32+...+360)
2S = 361 - 1
b,2S+1=361-1+1=361 = 3x-3
=>x-3=61=>x=64
c, S=1+3+32+...+360
=(1+3)+(32+33)+...+(359+360)
=4+32(1+3)+...+359(1+3)
=4+32.4+...+359.4
=4(1+32+...+359) chia hết cho 4
S=1+3+32+...+360
=(1+3+32)+....+(358+359+360)
=13+...+358(1+3+32)
=13+...+358.13
=13(1+...+358)
a) A= (2+22)+(23+24)+........(259+260)
= 1(2+22) + 22(2+22) + ....... 258(2+22)
= 1.6 + 22.6 +......... 258.6
=6(1+22+.......258)
Vì 6 chia hết cho 3 nên => 6(1+22+........258)
Các câu còn lại cũng tương tự như vậy nha bn!
De thay B co 996 so hang
Ta co: 3+3^3+3^5+...+3^1991
= (3+3^3+3^5)+...+(3^1987+1989+1991)
=3.(1+3^2+3^4)+...+3^1987.(1+3^2+3^4)
=3.91+...+3^1987.91
=(3+..+3^1987).91=(3+...+3^1987).13.7 chia het cho 13
3+3^3+3^5+...+3^1991
=(3+3^3+3^5+3^7)+...+(3^1985+3^1987+3^1989+3^1991)
=3(1+3^2+3^4+3^6)+...+3^1985.(1+3^2+3^4+3^6)
=3.820+...+3^1985.820=(3+...+3^1985).820=(3+....+3^1985).41.20 chia het cho 41
chưng tỏ B:13
B=3+33+35+...+31991:13
B=3. (1+9+81)+37.(1+9+81)+...+31989.(1+9+81):13
B=91.(3+37+313+...+31989):13
vì 91:13=>B:13
vậy B:13
chưng tỏ B:41
B=3+33+35+...+31991:41
B=3.(1+9+81+729)+39.(1+9+81+729)+...+31988.(1+9+81+729):41
B=820.(3+39+317+...+31988):41
vì 820:41=>B:41
vậy B:41
Ta đặt biểu thức trên là S
Ta có S = 3 x (1 + 3^2 + 3^4 + 3^6 + ... + 3^1990) = 3 x P
Chứng mình S chia hết cho 13 và 41 tương đưong với chứng mình P chia hết cho 13 và 41
P có 996 số hạng
Nhóm P thành từng bộ 3 số hạng
P = 1 + 3^2 + 3^4 + 3^6 + ... + 3^1990
= (1 + 3^2 + 3^4) + 3^6 x (1 + 3^2 + 3^4) + ... + 3^1986 x (1 + 3^2 + 3^4)
= (1 + 3^2 + 3^4) x (1 + 3^6 + 3^12 + ... + 3^1986)
= 91 x (1 + 3^6 + .... + 3^1986)
Do 91 chia hết cho 13 nên P cũng chia hết cho 13
Nhóm P thành từng bộ 4 số hạng và làm tương tự ta cũng có:
P = (1 + 3^2 + 3^4 + 3^6) x (1 + 3^8 + 3^16 + ... + 3^1984)
= 820 x (1 + 3^8 + 3^16 + ... + 3^1984)
Do 820 chia hết cho 41 nên P cũng chia hết cho 41
Ta có:
B= 3 + 33 + 35 + … + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + … + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + … + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + … + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + … + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + … + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + … + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + … + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + … + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + … + 31985 x 820= 3 x 20 x 41 + … + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41
a, SSH của S là : (99 - 0) : 1 + 1 = 100 (số hạng)
Nếu nhóm 2 số hạng vào một nhóm thì số nhóm là :
100 : 2 = 50 (nhóm)
TA CÓ :
S = (1 + 5) + (52 + 53) + .... + (598 + 599)
S = (1 + 5) + 52(1 + 5) + ... + 598(1 + 5)
S = 6 + 52 . 6 + .... + 598.6
S = 6.(1 + 52 + .... + 598) chia hết cho 6
Vậy S chia hết cho 6
b, Nếu nhóm 4 số hạng vào một nhóm thì số nhóm là :
100 : 4 = 25 (nhóm)
TA CÓ :
S = (1 + 5 + 52 + 53) + (54 + 55 + 56 + 57) + .... + (596 + 597 + 598 + 599)
S = (1 + 5 + 52 + 53) + 54.(1 + 5 + 52 + 53) + .... + 596(1 + 5 + 52 + 53)
S = 156 + 54 . 156 + .... + 596 . 156
S = 156 . (1 + 54 + ... + 596) chia hết cho 78
Vậy S chia hết cho 78
a )
Số lượng số của S là :
\(\left(99-0\right):1+1=100\) ( số )
Do \(100⋮2\)nên ta nhóm 2 số liền nhau thành 1 nhóm như sau :
\(S=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)\)
\(\Rightarrow S=6+5^2\left(1+5\right)+...+5^{98}\left(1+5\right)\)
\(\Rightarrow S=6+5^2.6+...+5^{99}.6\)
\(\Rightarrow S=6\left(1+5^2+...+5^{99}\right)⋮6\left(đpcm\right)\)
b )
Để \(S⋮78\Leftrightarrow S⋮6;13\)
Do \(100⋮4\)nên ta nhóm 4 số liền nhau thành 1 nhóm như sau :
\(S=\left(1+5+5^2+5^3\right)+\left(5^4+5^5+5^6+5^7\right)+...+\left(5^{96}+5^{97}+5^{98}+5^{99}\right)\)
\(\Rightarrow S=156+5^4\left(1+5+5^2+5^3\right)+...+5^{96}\left(1+5+5^2+5^3\right)\)
\(\Rightarrow S=156+5^4.156+...+5^{96}.156\)
\(\Rightarrow S=156\left(1+5^4+...+5^{96}\right)⋮13\left(156⋮13\right)\)
Do \(S⋮6;13\Rightarrow S⋮78\left(đpcm\right)\)
Ta có: B= 3 + 3
3 + 3
5 + ... + 3
1991= ﴾3 + 3
3 + 3
5
﴿ + ﴾3
7+ 3
9 + 3
11
﴿ + ... + ﴾3
1987 + 3
1989 + 3
1991
﴿.
= 3 x ﴾1 + 3
2 + 3
4
﴿ + 3
7 x ﴾1 + 3
2 + 3
4
﴿ + ... + 3
1987 x ﴾1 + 3
2 + 3
4
﴿.
= 3 x 91 + 3
7 x 91 + ... + 3
1987 x 91= 3 x 7 x 13 + 3
7 x 7 x 13 + ... + 3
1987 x 7 x 13.
= 13 x ﴾ 3 x 7 + 3
7 x 7 + ... + 3
1987 x 7﴿.
Vì B = 13 x ﴾ 3 x 7 + 3
7 x 7 + ... + 3
1987 x 7﴿ nên B chia hết cho 13.
B= ﴾3 + 3
3 + 3
5 + 3
7
﴿ + ... + ﴾3
1985 + 3
1987 + 3
1989 + 3
1991
﴿.
= 3 x ﴾1 + 3
2 + 3
4 + 3
6
﴿ + ... + 3
1985 x ﴾1 + 3
2 + 3
4 + 3
6
﴿.
= 3 x 820 + ... + 3
1985 x 820= 3 x 20 x 41 + ... + 3
1985 x 20 x 41.
= 41 x ﴾ 3 x 20 + .. + 3
1985 x 20﴿
Vì B =41 x ﴾ 3 x 20 + .. + 3
1985 x 20﴿ nên B chia hết cho 41.
TK NHA
Ta có: B= 3 + 3 3 + 3 5 + ... + 3 1991= ﴾3 + 3 3 + 3 5 ﴿ + ﴾3 7+ 3 9 + 3 11 ﴿ + ... + ﴾3 1987 + 3 1989 + 3 1991 ﴿. = 3 x ﴾1 + 3 2 + 3 4 ﴿ + 3 7 x ﴾1 + 3 2 + 3 4 ﴿ + ... + 3 1987 x ﴾1 + 3 2 + 3 4 ﴿. = 3 x 91 + 3 7 x 91 + ... + 3 1987 x 91= 3 x 7 x 13 + 3 7 x 7 x 13 + ... + 3 1987 x 7 x 13. = 13 x ﴾ 3 x 7 + 3 7 x 7 + ... + 3 1987 x 7﴿. Vì B = 13 x ﴾ 3 x 7 + 3 7 x 7 + ... + 3 1987 x 7﴿ nên B chia hết cho 13.
B= ﴾3 + 3 3 + 3 5 + 3 7 ﴿ + ... + ﴾3 1985 + 3 1987 + 3 1989 + 3 1991 ﴿. = 3 x ﴾1 + 3 2 + 3 4 + 3 6 ﴿ + ... + 3 1985 x ﴾1 + 3 2 + 3 4 + 3 6 ﴿. = 3 x 820 + ... + 3 1985 x 820= 3 x 20 x 41 + ... + 3 1985 x 20 x 41. = 41 x ﴾ 3 x 20 + .. + 3 1985 x 20﴿ Vì B =41 x ﴾ 3 x 20 + .. + 3 1985 x 20﴿ nên B chia hết cho 41.