Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rut gon: S= 2+2^2+2^3+.................. + 2^100
\(\Rightarrow\) 2S= 2 ( 2+2^2+2^3+.................. + 2^100 )
2S= 2^2+2^3+.................. + 2^101
2S-S= 2^101-2
S=2+22+23+...+2100
S=(2+22+23+24)+...+(297+298+299+2100)
S=2x(1+2+22+23)+...+297x(1+2+22+23)
S=2x15+...+297x15
S=15x(2+...+297)
Vậy S\(⋮\)15
S=2+22+23+...+2100
=>2S=22+23+...+2101
=>S=2S-S=(22+23+...+2101)-(2+22+23+...+2100)
=>S=2101-2=225x4-2=...6-2=...4
Vậy chữ số tận cùng của S là 4
Dễ thấy S có 100 số hạng nên ta có:
a,S=(2^1+2^2)+(2^3+2^4)+...+(2^99+2^100)
=2(1+2)+2^3(1+2)+...+2^99(1+2)
=3(2+2^3+...+2^99) chia hết cho 3
b,S=(2^1+2^2+2^3+2^4)+...+(2^97+2^98+2^99+2^100)
=2(1+2+4+8)+...+2^97(1+2+4+8)
=15(2+2^5+...+2^97) chia hết cho 15
c, Ta có: 2S=2^2+2^3+...2^201
2S-S=2^201-2
Do 2^201=4^100 có chữ số tận cùng là 6
Nên 2^201-2 có chữ số tận cùng là 4
Hay S có chữ số tận cùng là 4
S=2+22+23+....+2100
2.S=2+(22+23+...+299+2100)
2.S=22+23+24+...+2100+2101
-S=2+22+23+24+...+2100
2.S-S=2101-2
S=2100
Lưu Ý:Những chữ số mình viết thẳng hàng hay như thế nào thì bạn trình bày y như thế mới đúng ,kể cả gạch dài nha!
S = \(2+2^2+2^3+...+2^{100}\)
2S = \(2^2+2^3+...+2^{101}\)
2S - S = \(2^{101}-1\)
S = \(2^{101}-1\)
Vì \(101\) chia \(4\) dư \(1\) có dạng \(4k+1\) nên \(2^{101}\)có tận cùng là \(2\) . Mà S = \(2^{101}-1\)nên S có tận cùng là \(1\)
S = \(2+2^2+2^3+...+2^{100}\)
S = \(\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
S = \(2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
S = \(3.5.\left(2+2^5+...+2^{97}\right)\)chia hết cho \(3\) và\(5\)
\(S=2\left(1+2+2^2+2^3+...+2^{99}\right)\)
\(\Rightarrow S=2\left[\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\right]\)
\(\Rightarrow S=6\left(1+2^2+2^4+...+2^{98}\right)\)chia hết cho 3 (1)
\(S=2\left[\left(1+2^2\right)+2\left(1+2^2\right)+...+2^{96}\left(1+2^2\right)+2^{97}\left(1+2^2\right)\right]\)
\(\Rightarrow S=2.5\left(1+2+2^2+...+2^{97}\right)\)chia hết cho 5 (2)
Từ (1) và (2) suy ra S chia hết cho 15 (vì 3.5=15 và ƯCLN(3,5)=1)
S= (2+2^2+2^3+2^4) + .......+ (2^97+2^98+2^99+2^100) = 2.(1+2+2^2+2^3) + ........+2^97.(1+2+2^2+2^3)
= 2.15+........+2^97.15 = 15.(2+2^5+.........+2^97) * 15
Ta có : 2S = 2^2+2^3+2^4+.......+2^101
=> 2S-S = (2^2+2^3+2^4+.........+2^101) - (2+2^2+2^3+........+2^100) = 2^101 - 2 = S
vì 2^101-2 = 2^100.2-2 = (.....6) . 2 -2 = (.....2) - 2 = (......0)
vậy S có c/s tận cùng là 0
1) Nhóm 4 số hạng liên tiếp vào
2) Chữ số tận cùng là 2
3) Rút gọn S = 2101 - 2