Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
S = 2 + 22 + 23 + ..... + 28 + 29
S = ( 2 + 22 + 23) + ........ + ( 27 + 28 + 29 )
S = 2 . ( 1 + 2 + 4 ) + ....... + 27 . ( 1 + 2 + 4 )
S = 2 . 7 + ........ + 27 . 7
Vì mỗi tích trên đều chia hết cho 7 \(\Rightarrow\)S chia hết cho 7
=(2+22+23) +(24 +25+26)+(27+28+29)
=2(1+2+22)+24(1+2+22)+27(1+2+22)
=(1+2+22)(2+24+27)
=7(2+24+27)
vậy S chia hết cho 7
S=[2+2^2+2^3]+[2^4+2^5+2^6]+...+[2^2008+2^2009+2^2010] CHIA HẾT CHO 14
SUY RA S CHIA HẾT CHO 14
GIỮ LỜI NHA
S = 2 + 22 + 23 + ... + 22010
= (2 + 22 + 23) + (24 + 25 + 26) + ... + (22008 + 22009 + 22010)
= 2(1 + 2 + 22) + 24(1 + 2 + 22) + ... + 22008(1 + 2 + 22)
= 2.7 + 24.7 + ... + 22008. 7
= 14 + 23.14 + ... + 22007.14
= 14(1 + 23 + ... + 22007) \(⋮\)14
dễ ợt
s=2010(1+20100+2010^3(1+2010)+............+2010^2009(1+2010)
s=2010.2011+2010^3.2011+.........+2010^2009.2011
s=2011(2010+2010^3+.......+2010^2009) chia hết cho 2011
\(S=\left(2010+2010^2\right)+\left(2010^3+2010^4\right)+...+\left(2010^{2009}+2010^{2010}\right)\)
\(S=2010\left(2010+1\right)+2010^3\left(2010+1\right)+...+2010^{2009}\left(2010+1\right)\)
\(S=2011.\left(2010+2010^3+2010^5+...+2010^{2009}\right)\) chia hết cho 2011
4= 30+31(làm ra nháp)
S= 3+32+33+...+3100
S= (3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)
S=(3x1+3x3)+(3^3x1+3^3x3)+(3^5x1+3^5x3)+...+(3^99x1+3^99x3)
S=3x(1+3)+3^3x(1+3)+3^5x(1+4)+...+3^99x(1+3)
S=3x4+3^3x4+3^5x4+...+3^99x4
S=4x(3+3^3+3^5+...+3^99)
=> S chia hết cho 4.
Đặt Tên Chi
Tìm kiếm
Báo cáo
Đánh dấu
24 tháng 12 2015 lúc 20:28
Cho S=3+32+33+........+3100
a, Chứng minh rằng S chia hết cho 4.
b, Chứng minh rằng 2S+3 là 1 lũy thừa của 3
Toán lớp 6
bài 1
chứng minh chia hết cho 3 nè
s=\(2+2^2+2^3+...+2^{100}\)
s=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
s=\(2.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{99}.\left(1+2\right)\)
s=\(2.3+2^2.3+...+2^{99}.3\)
s=\(3.\left(2+2^2+...+2^{99}\right)\)chia hết cho 3 => s chia hết cho 3(đpcm)
chứng minh chia hết cho 5
s=\(\left(2+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
s=\(2.\left(1+2+4+8\right)+...+2^{97}.\left(1+2+4+8\right)\)
s=\(2.15+...+2^{97}.15\)
s=\(15.\left(2+...+2^{97}\right)\)chia hết cho 5=> s chia hết cho 5
mong là có thể giúp được bạn
\(S=3+3^2+3^3+...+3^{2019}\)
\(3S=3^2+3^3+3^4+...+3^{2020}\)
\(3S-S=3^{2020}-3\)
\(2S=3^{2020}-3\)
\(2S+3=3^{2020}-3+3\)
\(2S+3=3^{2020}\)
vậy_
câu d thì S là số chính phương
còn câu e thì S bé hơn 3^2020, câu b bạn ghép 3 số đầu tiên lại sẽ được 39 còn các số 36, 81, 108 ko có số nào ghép cùng nhau được còn các câu còn lại bạn chỉ làm như bình thường còn câu c thì kết quả S=3^2020 - 2, câu a bạn tự làm nhé!
đúng rùi đó
\(2S=2^2+2^3+2^4+.....+2^{2011}\Rightarrow2S-S=2^{2011}-2=2\left(2^{2010}-1\right)=2\left(4^{1005}-1\right)\)
\(4\equiv1\left(\text{mod 3}\right)\Rightarrow4^{1005}\equiv1^{1005}\equiv1\left(\text{mod 3}\right)\Rightarrow4^{1005}-1⋮3\Rightarrow S⋮2.3=6\text{ ta có điều phải chứng minh}\)