K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 2

Lời giải:

** Sửa lại đề:
$S=1.2^0+2.2^1+3.2^2+...+2019.2^{2018}$

$2S=1.2^1+2.2^2+3.2^3+...+2018.2^{2018}+2019.2^{2019}$

$\Rightarrow 2S-S=2019.2^{2019}-(2^0+2^1+2^2+2^3+...+2^{2018})$

$\Rightarrow S=2019.2^{2019}-(2^0+2^1+2^2+2^3+...+2^{2018})$

Xét:

$M=2^0+2^1+2^2+..+2^{2018}$

$2M=2^1+2^2+2^3+...+2^{2019}$

$\Rightarrow 2M-M=2^{2019}-2^0$

$\Rightarrow M=2^{2019}-1$
$S=2019.2^{2019}-M = 2019.2^{2019}-(2^{2019}-1)=2018.2^{2019}+1$

Xét hiệu:

$S-(2019.2^{2018}+2019)=2018.2^{2019}+1-2019.2^{2018}-2019$

$=2^{2018}(2018.2-2019)+1-2019$

$=2^{2018}.2017-2018>0$

$\Rightarrow S> 2019.2^{2018}+2019$

8 tháng 9 2020

a) \(32< 2^x< 128\)

=> \(2^5< 2^x< 2^7\)

=> x = 6

b) \(2^{x-1}+4\cdot2^x=9\cdot2^5\)

=> \(2^{x-1}+2^2\cdot2^x=9\cdot2^5\)

=> \(2^{x-1}+2^{2+x}=9\cdot2^5\)

=> 9.2x-1 = 9.25

=> 2x-1 = \(\frac{9\cdot2^5}{9}=2^5\)

=> x - 1 = 5 => x = 6

c) \(9\cdot27\le3^x\le243\)

=> \(243\le3^x\le243\)

=> x = 5

d) Giống câu b)

e) \(3^{x-1}+5\cdot3^{x-2}=216\)

=> 8.3x-2 = 216

=> 3x-2 = 27

=> 3x-2 = 33

=> x - 2 = 3 => x = 5

f) 27x-3 = 9x+3 

=> 27x-3 = 9x+3

=> (33)x-3 = (32)x+3

=> 33x-9 = 32x + 6

=> không thỏa mãn x vì x là phân số mà theo đề bài là số nguyên

g) x2019 = x => x2019 - x = 0 => x(x2018 - 1) = 0 => x = 0 hoặc x = 1

8 tháng 9 2020

a) 

\(2^5< 2^x< 2^7\) 

\(5< x< 7\) 

\(x=6\) 

b) 

\(2^{x-1}+2^2\cdot2^x=9\cdot2^5\) 

\(2^{x-1}+2^{2+x}=9\cdot2^5\) 

\(2^{x-1}\left(1+2^3\right)=9\cdot2^5\) 

\(2^{x-1}\cdot9=9\cdot2^5\) 

\(2^{x-1}=2^5\) 

\(x-1=5\) 

\(x=6\)

19 tháng 3 2019

Đề thi đó

10 tháng 11 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(=1-\frac{1}{2020}< 1\)

Vậy \(A< 1\left(đpcm\right)\)

10 tháng 11 2019

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{50}\)

\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}\)

\(\Leftrightarrow B< \frac{3}{4}\left(đpcm\right)\)

6 tháng 12 2020

Ta có \(S=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2018}{2^{2018}}+\frac{2019}{2^{2019}}\)

=> 2S = \(1+1+\frac{3}{2^2}+...+\frac{2018}{2^{2017}}+\frac{2019}{2^{2018}}\)

Khi đó 2S - S = \(\left(1+1+\frac{3}{2^2}+..+\frac{2018}{2^{2017}}+\frac{2019}{2^{2018}}\right)-\left(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2018}{2^{2018}}+\frac{2^{2019}}{2019}\right)\)

=> S = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}+\frac{1}{2^{2018}}-\frac{2019}{2^{2019}}\)

Đặt P = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}+\frac{1}{2^{2018}}\)

=> 2P = \(2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\)

Khi đó 2P - P = \(\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}+\frac{1}{2^{2018}}\right)\)

P = \(2-\frac{1}{2^{2018}}\)

Thay P vào S 

=> S = \(2-\frac{1}{2^{2018}}-\frac{2019}{2^{2019}}=2-\frac{2}{2^{2019}}-\frac{2019}{2^{2019}}=2-\frac{2021}{2^{2019}}< 2\)

Vậy S < 2

2 tháng 8 2015

=99/100       

2 tháng 8 2015

=> \(C=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

C = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)

C = \(1-\frac{1}{100}

DT
2 tháng 10 2023

Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0

=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0 

Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1

Thay vào bt S :

S = ( 2 - 1)^2019 + (2-1)^2019

= 1^2019 + 1^2019 = 2

2 tháng 10 2023

em cảm ơn

 

27 tháng 6 2019

Ta tính hiệu của M và T

ta có 

Hiệu của Mẫu và Tử của A là   2019^2019-1 - (2019^2018-1) = 2019^2019 - 2019^2018 = 2019^2019.2018

Hiệu của Mẫu và Tử của B là   2019^2019+1 - (2019^2018+1) = 2019^2019 - 2019^2018 = 2019^2019.2018

2 Hiệu trên bằng nhau nên A < B  

4 tháng 10 2019

sud kênh Mik ủng hộ với tên kênh là M.ichibi

kênh làm về MINECRAFT

4 tháng 10 2019

\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)

\(A=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\)

tự tính

7 tháng 4 2019

Trả lời giúp nha

NV
7 tháng 4 2019

\(A=2^{2019}-2^{2018}-2^{2017}-...-2-1\)

\(A=2^{2019}-\left(2^{2018}+2^{2017}+...+2+1\right)=2^{2019}-B\)

Xét \(B=2^{2018}+2^{2017}+...+2+1\)

\(\Rightarrow2B=2^{2019}+2^{2018}+...+2^2+2\)

\(\Rightarrow2B-2^{2019}+1=2^{2018}+2^{2017}+...+2+1\)

\(\Rightarrow2B-2^{2019}+1=B\)

\(\Rightarrow B=2^{2019}-1\)

\(\Rightarrow A=2^{2019}-B=2^{2019}-\left(2^{2019}-1\right)=2^{2019}-2^{2019}+1=1\)

Vậy \(A=1\)