K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

\(S=1+3+3^2+...+3^9\)

Ta có: \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^8+3^9\right)\)

\(S=4+3^2.\left(1+3\right)+...+3^8.\left(1+3\right)\)

\(S=4+3^2.4+...+3^8.4\)

\(S=4.\left(1+3^2+...+3^8\right)\)

Vì \(4⋮4\) nên \(4.\left(1+3^2+...+3^8\right)⋮4\)

Vậy \(S⋮4\).

\(#NqHahh\)

17 tháng 12 2023

giúp tôi với

18 tháng 12 2021

gải giúp mình với

19 tháng 12 2021

\(S=\left(1+3\right)+...+3^8\left(1+3\right)\)

\(=4\left(1+...+3^8\right)⋮4\)

7 tháng 1 2022

S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 = (1 + 3) + (32 + 33) + (34 + 35) + (36 + 37) + (38 + 39) = 1.(1 + 3) + 32.(1 + 3) + 34.(1 + 3) + 36​.(1 + 3) + 38​.(1 + 3) = (1 + 3).(1 + 32 + 34 + 36 + 38) = 4.(1 + 32 + 34 + 36 + 38) => S ⋮ 4. Vậy S ⋮ 4 (đpcm)

17 tháng 10 2021

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha


 

14 tháng 10 2017

Lẹ đi mọi người mik đang cần gấp!

14 tháng 10 2017

1/ ta có : 

11.12.13+ 114.115.116+ 1117.1118.1119= 11.3.4.13+ 3.38.115.116+ 1117.1118.3.373

= 3(11.4.13+ 38.115.116+ 1117.1118.373 ) chia hết cho 3 => đpcm

2/ a)(mik nghĩ là bn nhầm, nếu 7^2 +...+ 7^60 chia hết cho 8 thì chắc chắn là sai hoàn toàn, nên mik sửa đề) ta có :

S = \(7+7^2+7^3+7^4+7^5+...+7^{59}+7^{60}\) 

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)+...+\left(7^{59}.7^{60}\right)\)

\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{59}\left(1+7\right)\)

\(=7.8+7^3.8+...+7^{59}.8\)

\(=8\left(7+7^3+...+7^{59}\right)⋮8\)(đpcm)

b) \(A=a+a^2+a^3+a^4+...+a^{23}+a^{24}\)

\(=\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{23}+a^{24}\right)\)

\(=a\left(1+a\right)+a^3\left(1+a\right)+...+a^{23}\left(1+a\right)\)

\(=\left(1+a\right)\left(a+a^3+...+a^{23}\right)⋮\left(a+1\right)\)(đpcm)

Nhớ kb với mik nha!

20 tháng 12 2015

tích từ bài từng câu a , b , ... ra đi

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà

14 tháng 1 2016

*S với 3^2 ta dược;

9S=3^2+3^4+...+3^2002+3^2004

\(\Rightarrow\)9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+3^2002)

Ta có:S la số nguyên nên phải chung minh 3^2004-1 chia hết cho 7

ta có:3^2004-1=(3^6)^334-1=(3^6-1).M=7.104.M

\(\Rightarrow\)3^2004 CHIA hết cho 7 mặt khác ucln(7;8)=1 nen S CHIA HẾT CHO 7