Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+3+3^2+3^3+3^4+...+3^2009
=(1+3)+(3^2+3^3)+...+(3^2008+3^2009)
=4+3^2(1+3)+...+3^2008(1+3)
=4(1+3^2+...+3^2008) chia hết cho 4
a)
S = 4 + 42 + 43 + ... + 499 + 4100
S = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 499 + 4100 )
S = 4( 1 + 4) + 43.( 1 + 4) + ... + 499( 1 + 4)
S = 4.5 + 43.5 + .. + 499.5
S = ( 4 + 43 + .. +499).5 => S \(⋮\)5
b) S = 2 + 22 + 23 + ... + 22009 + 22010
=> S \(⋮\)2
S = = 2 + 22 + 23 + ... + 22009 + 22010
S = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )
S = 2( 1 + 2 ) + 23( 1 + 2 ) + ... +22009( 1 + 2 )
S = 2.3 + 23.3 +... +22009.3
S = ( 2 + ... +22009 ) x 3
=> s\(⋮\) 3
=> S chia he^'t cho 2 va` 3 ne^n S \(⋮\) 6
S=1+7+7^2+7^3+...+7^100+7^101
=(1+7)+7^2(1+7)+...+7^100(1+7)
=8+7^2.8+...+7^100.8
=8.(1+7^2+...+7^100) chia hết cho 8
Vậy S chia hết cho 8
a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5
S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)
S=20+4^2*20+...+4^98
S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)
b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6
S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
S=6+2^2.*6+...+2^2008
S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6
2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29
= (2 + 22 + 23) + (24 +25 + 26) +(27 + 28 + 29)
= (2 + 22 + 23) + 23(2 + 22 + 23) + 26(2 + 22 + 23)
= 14 + 23.14 + 26.14
= 14(1 + 23 + 26) chia hết cho 7 (ĐPCM)
1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số
Gọi số phải tìm là A
Ta có A + 4 chia hết cho 5 , 7 , 9
Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315
Do đó A = 315 - 4 = 311
2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100
S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )
S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )
S = 1.30 +...+2^96.30
S = ( 1 +...+2^96 )30
Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15
Hay S chia hết cho 15
b) Vì S cha hết cho 30 nên S chia hết cho 10
Suy ra S có tận cùng là 0
c) S = 2^1 + 2^2 + 2^3 +...+2^100
2S = 2^2 + 2^3 + 2^4 +...+ 2^101
2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )
S = 2^101 - 2^1
S = 2^101 - 2
1. 158
2a. 0 ( doan nha )
b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )
= 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)
= 2.15+2^5.15+...+2^97.15
= 15.(2+2^5+...+2^97) chia het 15
c.2^101-2^1
3. chiu !
S=(1+2)+(22+23)+.....+(26+27)
S= 3 +22(1+2)+....+26(1+2)
S= 3 +22.3+.....+26.3
S= 3(1+22+.....+26)chia hết cho 3
Tick mình đầu tiên nha