\(1+2+2^2+2^3+........+2^{100}\)

Tìm số dư của phép chia

S : 5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

\(S=1+2+2^2+2^3+...+2^{100}\)

\(2S=2+2^2+2^3+2^4+...+2^{101}\)\(2S-S=\left(2+2^2+2^3+2^4+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)

\(S=2^{101}-1\)

Mk chỉ tính ra được S thui,nếu được thì bn làm nốt phần còn lại nhé

Chỉ gợi ý đến đó thui nhưng bn cũng nhớ phải k cho mk đó

15 tháng 8 2017

\(S=1+2+2^2+....+2^{100}\)

\(\Leftrightarrow2A=2+2^2+2^3+...+2^{101}\)

\(\Rightarrow2A-A=2^{101}-1\)

\(\Rightarrow A=2^{201}-1=4^{50}.2-1=\overline{......6}.2-1=\overline{.......2}-1=\overline{......1}\) chia 5 dư 1

14 tháng 8 2017

a, S= 1+2+22(1+2+22)+25(1+2+22) +....+298(1+2+22)

1+2+22=7

S=3+7a+7b+....+7k => Schia 7 dư 3

b,S= 1+2(1+22+23+24+25)+27(1+22+23+24+25)+....+295(1+22+23+24+25)

mà (1+22+23+24+25)=63 chia hết cho 9

=>S=1+9c+9d+...+9t

=> S chia 9 dư 1

14 tháng 8 2017

á ghi lộn 

ko phải 1+22+23+24+ 2 đâu

là 1+2+22+23+24+ 25

làm lại câu b nè

S= 1+2+22+23+24+25(1+2+22+23+24+ 25)+....+294(1+2+22+23+24+ 25)

(1+2+22+23+24+ 25)=63 chia hết cho 9

S=55+9c+9d+...+9g

55 chia 9 dư 1

=>S chia 9 dư1

19 tháng 12 2016

S = 1 + ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 398 + 399 + 3100 )

= 1 + 3 ( 1 + 3 + 32 ) + 34 ( 1 + 3 + 32 ) + .... + 398 ( 1 + 3 + 32 )

= 1 + 3 ( 1 + 3 + 9 ) + 34 ( 1 + 3 + 9 ) + ..... + 398 ( 1 + 3 + 9 )

= 1 + 3.13 + 34 .13 +  .... + 398.13

= 1 + 13 ( 3 + 34 + ... + 398 ) 

Vì 13 ( 3 + 34 + ... + 398 ) chia hét cho 13 => 1 + 13 ( 3 + 34 + ... + 398 ) chia 13 dư 1

hay S chia 13 dư 1

21 tháng 12 2016

Sao cô giáo minh lại bảo số dư là 4 cơ:

ta có 1+3+3\(^2\)+3\(^3\)+...+3\(^{100}\)

S=(1+3)+(3\(^2\)+3\(^3\))+..+(3\(^{99}\)+3\(^{100}\))

=4.13.(3\(^2\)+...+3\(^{98}\))

Vậy S chia cho 13 dư4

23 tháng 3 2017

câu b lên mạng có thể tìm thấy câu tương tự

Câu a ) 

S = 5 + 52 +..... + 52012

=> S \(⋮5\)

S = 5 + 52 +..... + 52012

S = ( 5 + 53 ) + ( 52 + 54 ) + ........ + ( 52010 + 52012 )

S = 5 ( 1 + 52 ) + 52 ( 1 + 52 ) + ......... + 52010 ( 1 + 52 )

S = 5 x 26 + 52 x 26 + ................ + 52010 x 26

S = 26 ( 5 + 52 + .... + 52010 )

=> S\(⋮26\)

=>\(S⋮13\)( do 26 = 13 x 2 )

Do ( 5 , 13 ) = 1

=> \(S⋮5x13\)

=> \(S⋮65\)

4 tháng 7 2017

bạn ghi thế này tớ k hiểu

4 tháng 7 2017

Tớ ghi giống y hệt đề mà

16 tháng 12 2016

\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3-\frac{5}{n-1}\)

=>n-1 \(\in\) Ư(5) = {-5;-1;1;5}

n-1-5-115
n-4026

Vậy n = {-4;0;2;6}

S = 5+52+53+...+52006

5S = 52+53+54+...+52007

5S - S = (52+53+54+...+52007) - (5+52+53+...+52006)

4S = 52007 - 5

S = \(\frac{5^{2007}-5}{4}\)

 

16 tháng 4 2017

ai trả lời giùm cái

11 tháng 8 2017

a. Ta có :

\(S=1-3+3^2-3^3+..........+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+............+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(=1\left(1-3+3^2-3^3\right)+............+3^{96}\left(1-3+3^2-3^3\right)\)

\(=1.\left(-20\right)+..........+3^{96}\left(-20\right)\)

\(=\left(-20\right)\left(1+......+3^{96}\right)⋮-20\)

\(\Leftrightarrow S\)\(B\left(-20\right)\)

b. Ta có :

\(S=1-3+3^2-3^3+............+3^{98}-3^{99}\)

\(\Leftrightarrow3S=3-3^2+3^3-3^4+...............+3^{99}-3^{100}\)

\(\Leftrightarrow3S+S=\left(3-3^2+3^3-......-3^{100}\right)+\left(1-3+.....+3^{98}-3^{99}\right)\)

\(\Leftrightarrow4S=1-3^{100}\)

\(\Leftrightarrow S=\dfrac{1-3^{100}}{4}\)

\(S\in B\left(-20\right)\Leftrightarrow S\in Z\)

\(\Leftrightarrow1-3^{100}⋮4\)

Hay \(3^{100}-1⋮4\)

\(\Leftrightarrow3^{100}:4\left(dư1\right)\rightarrowđpcm\)