Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
\(S=\left(1+5^2+5^4+5^6\right)+...+\left(5^{2014}+5^{2016}+5^{2018}+5^{2020}\right)\)
\(=\left(1+5^2+5^4+5^6\right)+...+5^{2014}+\left(1+5^2+5^4+5^6\right)\)
\(=\left(1+5^2+5^4+5^6\right).\left(1+...+5^{2014}\right)\)
\(=16276.\left(1+5^2+...+5^{2014}\right)⋮313\)
Mà ta có: \(S=16276⋮313\)
Vậy \(S⋮313\)
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
\(S=\left(1+5^2+5^4+5^6\right)+...+\left(5^{2014}+5^{2016}+5^{2018}+5^{2020}\right)\\ S=\left(1+5^2+5^4+5^6\right)+...+5^{2014}\left(1+5^2+5^4+5^6\right)\\ S=\left(1+5^2+5^4+5^6\right)\left(1+...+5^{2014}\right)\\ S=16276\left(1+...+5^{2014}\right)⋮313\left(16276⋮313\right)\)
\(S=5^2+5^4+5^6+.....+5^{2020}\)
Biết rằng mỗi số mũ của tổng các lũy thừa là số chẵn cách nhau 3 đơn vị
\(S=5^2+2^1-5^1\)
\(S=7^3-5^1\)
\(S=5^2:1^1\)
\(S=4^1\)
S=(6+51+52+53+.........52020)x20
S=20x(51+52)+20x(53+54)+...........20x(52019+52020)+20x6
S=20x30+20x(53+54)+20x6+.........+20x(52019+52020)
S=600+120+20x(53+54)...........+20x(52019+52020)
Ta có:600+120+20x(53+54)+.........+20x(52019+52020):hết cho 120
Vì 600:hết cho 120;120:hết cho 120;20x(53+54)+.............+20x(52019+52020):hết cho 120
Nên S : hết cho 120
a)\(\overline{abcabc}=1001\cdot\overline{abc}=...\)chưa chứng minh được chia hết cho 3, bạn kiểm tra lại đề nhé.
Chắc là đề cho \(\overline{abc}⋮3\)
b)\(S=5+5^2+5^3+...+5^{2004}=\left(5^1+5^4+5^2+5^5+5^3+5^6\right)+...+\left(5^{1999}+..+5^{2001}+5^{2004}\right)\)
Cứ 2 số hạng liền kề nhau trong tổng trên đều chia hết cho 5+125=130, tức là đều chia hết cho 65.
Còn chứng minh chia hết cho 125 thì mình thấy hơi lạ, mình không làm được.
Chúc bạn học tốt!