Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+5+5^2+5^3+...+5^{20}\)
\(\Leftrightarrow5S=5+5^2+5^3+5^4+...+5^{21}\)
\(\Leftrightarrow4S=5^{21}-1\)
Mà \(4S+1=5^n\Leftrightarrow5^{21}=5^n\Leftrightarrow n=21\)
BÀi 2
( x+ 1 )+ ( x +2 ) + ... + ( x + 100) = 5750
x + 1 +x + 2 + .. x+ 100 = 5750
(x+ x+ .. +x ) + ( 1+ 2 + ... +100) = 5750
100x + 5050 = 5750
100x = 5750 - 5050
100x = 700
x = 700 : 100
x = 7
bài này trong sách tuyển chọn đề thi học sinh giỏi lớp 6; 7; 8 môn toán; đề 6; bài 4; trang 78.
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
M=tan cung 5=> C=5
2)=> d=0
3)ab=10a+b=a+b^2
9a=b(b-1)=>b=9; a=8
ds:8950
Ta có \(S=1+5+5^2+5^3+...+5^{20}\)
\(\Rightarrow5S=5+5^2+5^3+5^4+...+5^{21}\)
\(\Rightarrow5S-S=\left(5+5^2+5^3+5^4+...+5^{21}\right)-\left(1+5+5^2+5^3+...+5^{20}\right)\)
\(\Rightarrow4S=5+5^2+5^3+5^4+...+5^{21}-1-5-5^2-5^3-...-5^{20}\)
\(\Rightarrow4S=5^{21}-1\)\(\Rightarrow4S+1=5^{21}\)
Vậy \(n=21\)