K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

tick nhé ❤️

26 tháng 1 2016

S=1-3+3^2-3^3+...+3^98-3^99

=(1-3+3^2-3^3)+...+(3^96-3^97+3^98-3^99)

=-20+...+3^96(1-3+3^2-3^3)

=-20(1+...+3^96) chia hết cho -20

S=1-3+3^2-3^3+...+3^98-3^99

3S=3-3^2+3^3-3^4+...+3^99-3^100

3S+S=3-3^2+3^3-3^4+...+3^99-3^100+1-3+3^2-3^3+...+3^98-3^99

4S=-3^100+1

S=(-3^100+1):4

30 tháng 6 2023

\(S=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\\ =\left(3+3^2+3^3\right)+3^3.\left(3+3^2+3^3\right)+3^6.\left(3+3^2+3^3\right)\\ =39+3^3.39+3^6.39\\ =-39.\left(-1-3^3-3^6\right)⋮\left(-39\right)\)

30 tháng 6 2023

S = 3 + 32 + 33 + 34 + 35 + 3+ 37 + 38 + 39

S = ( 3 + 32 + 33 ) +3+ 35 + 36 + 37 + 38 + 3

S = 39 + 34 + 35 + 36 + 37 + 38 + 39

Vì 39 ⋮ -39

<=> S ⋮ -39

21 tháng 8 2017

S=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^999+3^1000+3^1001)

S=1x(1+3+9)+3^3x(1+3+9)+...+3^999x(1+3+9)

S=1x13+3^3x13+...+3^999x13

S=13x(1+3^3+...+3^999)

Vậy S chia hết cho 13

S=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^999+3^1000+3^1001)

S=1x(1+3+9)+3^3x(1+3+9)+...+3^999x(1+3+9)

S=1x13+3^3x13+...+3^999x13

S=13x(1+3^3+...+3^999)

Vậy S chia hết cho 13

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

15 tháng 6 2016

Ta có : \(5=1\) ( mod 4 ) 

 => \(5^n=1\)( mod 4 ) 

\(\Rightarrow5^n-1=0\)( mod 4 )

\(\Rightarrow5^n-1\)chia hết cho 4

\(\leftrightarrowđpcm\)

15 tháng 6 2016

Ta có : 5 mũ n có cơ số là 5 

=> 5 mũ n tận cùng là 25 (với n >1)

+, n = 0

=> 5 mũ n - 1 = 1 - 1 = 0 chia hết cho 4

+, n =1

=> 5 mũ n - 1 = 5 - 1 = 4 chia hết cho 4

+, n > 1

=> 5 mũ n - 1 =  số có tận cùng là 25 - 1 = số có tận cùng là 24 chia hết cho 4 ( vì 24 chia hết cho 4)

=> đpcm

6 tháng 3 2020

a, 3n + 2 - 2n + 2 + 3n - 2n

= 3n(32 + 1) - 2n(22 + 1)

= 10.3n - 5.2n

= 10.3n - 10.2n - 1

= 10(3n - 2n - 1) chia hết cho 10

b, S = abc + bca + cab

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= 111a + 111b + 11c

= 111(a + b + c)

= 3.37(a+b+c)

giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên 

=> 3(a + b + c) chia hết cho 37

=> a + b + c chia hết cho 37

vì a;b;c là chữ số => a + b + c lớn nhất = 27

=> vô lí

vậy S không là số chính phương

6 tháng 3 2020

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(3^{n+2}+3^n-2^n-2^{n+2}\)

=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)

\(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)

\(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)

=\(3^n.10-2^{n-1}.5.2\)

\(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10

suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10

20 tháng 3 2017

S  = 17 . [ \(1+17+17^2\)] + \(17^3\left[1+17+17^2\right]\)+.......+\(^{17^5\left[1+17+17^3\right]}\)

S = 17 . 307 + 17^3 . 307 +....+ 17^5 .307

S= 307[ 17+17^3 +...+17^5] => S chia hết cho 307 

20 tháng 3 2017

Có tất cả số hạng ở biểu thức S là:

(18-1):1+1=18(số)

Vì 18 chia hết cho 3 nên ta chia biểu thức S làm 6 nhóm mỗi nhóm có 3 số hạng

S=17+17^2+17^3+.......+17^18

S=(17+17^2+17^3)+.......+(17^16+17^17+17^18)

S=17.(1+17+17^2)+........+17^16.(1+17+17^2)

S=17.307+.............+17^16.307

S=307.(17+........+17^16) chia hết cho 307

Vậy S chia hết cho 307

~shizadon~

27 tháng 12 2015

\(16^{10}+32^7=\left(2^4\right)^{10}+\left(2^5\right)^7=2^{40}+2^{35}=2^{35}.2^5+3^{35}=2^{35}.\left(2^5+1\right)=2^{35}.33\)

chia hết cho 33

tick nhé

27 tháng 12 2018

bn Hoàng Phúc làm đúng r đó