K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2015

S = 1 + 3 + 32 + 33 + ... + 330

3S = 3 + 32 + 33 + 34 +... + 331

3S - S = 331 + 330 - 330 + ... + 34 - 34 + 3- 33 + 32 - 32 + 3 - 3 - 1

(3 - 1)S = 331 - 1

2S = 331 - 1

 \(\Rightarrow S=\frac{3^{31}-1}{2}\)

17 tháng 10 2020

qua hoidap247 di

17 tháng 10 2020

làm j v bn

18 tháng 10 2015

2S=2+2^2+2^3+...+2^2016

=>S=2S-S=2^2016-1

=>S+1=2^2016

9 tháng 8 2017

1. A = 1 + 2 + 22 + ... + 2200
=> 2A = 2 + 22 + ... + 2200 + 2201
=> 2A - A = 2201 - 1
=> A = 2201 - 1
=> A + 1 = 2201 - 1 + 1 = 2201
2. B = 3 + 32 + 33 + ... + 32005
=> 3B = 32 + 33 + ... + 32005 + 32006
=> 3B - B = 32006 - 3
=> 2B = 32006 - 3
=> 2B + 3 = 32006 - 3 + 3 = 32006 (là lũy thừa của 3)
=> đpcm
@hanie anh

12 tháng 10 2021

So sánh:

a) 5^300 và 3^500

b) (-16)^11 và (-32)^9

c) (2^2)^3 và 2^2^3

d) 2^30 + 2^30 + 4^30 và 3^20 + 6^20 + 8^20

e) 4^30 và 3×24^10

g) 2^0 + 2^1 + 2^2 + 2^3 +...+ 2^50 và 2^51

29 tháng 9 2016

a, 3.3.3.3=34

b,6.6.3.3.2.2=62.32.22=(6.3.2)2=302

c, 20.10.y.y= 22.5.2.5.y2=23.52.y2=23.(5.y)2

d, m.m.m+n.n= m3.n2

Bạn nhớ k cho mình nha! Cảm ơn bạn!

30 tháng 9 2016

Cmon ban nha!

9 tháng 8 2017

1) A = 1+2+2\(^2\) + ... + \(2^{200}\)

2A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{201}\)

2A - A = 2 + 2\(^2\) +2\(^3\) + ... + \(2^{201}\) - 1 - 2 - ... - 2\(^{200}\)

A = 2\(^{201}\) - 1

A+1 = 2\(^{201}\)

Vậy a + 1 = 2\(^{201}\)

2) C = 3 + 3\(^2\) + 3\(^3\) + ... + 3\(^{2005}\)

3C = 3\(^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\)

3C - C = \(3^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\) - 3 - 3\(^2\) - 3\(^3\) - ... - 3\(^{2005}\)

2C = 3\(^{2006}\) - 3

2C+3 = 3\(^{2006}\)

Vậy 2C + 3 là luỹ thừa của 3 ( Đpcm )

30 tháng 9 2016

1.

A = 1 + 2 + 22 + 23 + ... + 2200

2A = 2 + 22 + 23 + 24 + ... + 2201

2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)

A = 2201 - 1

=> A + 1 = 2201 - 1 + 1

=> A + 1 = 2201

2.

B = 3 + 32 + 33 + ... + 32005

3B = 32 + 33 + 34 + ... + 32006

3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + ... + 32005)

2B = 32006 - 3

=> 2B + 3 = 32006 - 3 + 3

=> 2B + 3 = 32006

13 tháng 10 2019

\(A=1+2+2^2+2^3+....+2^{30}\)

\(2.A=2+2^2+2^3+2^4+...+2^{30}\)

\(2.A-A=\left(2+2^2+2^3+2^4+...+2^{31}\right)-\left(1+2+2^2+2^3+...+2^{30}\right)\)

\(A=2^{31}-1\)

\(\Rightarrow A+1=2^{31}-1+1\)

\(\Rightarrow A+1=2^{31}\)

13 tháng 10 2019

2 mũ 31

30 tháng 9 2016

A = 1 + 3 + 32 + 33 + ... + 32012

3A = 3 + 32 + 33 + 34 + ... + 32013

3A - A = (3 + 32 + 33 + 34 + ... + 32013) - (1 + 3 + 32 + 33 + ... + 32012)

2A = 32013 - 1

=> 2A + 1 = 32013 - 1 + 1

=> 2A = 32013