\(R=\frac{a^2.b}{c}\), Với giá trị nào của các chữ thì 

a, R=0

b, R>0<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

Các bạn ơi câu 1 là Q ko phải R mình viết lộn câu 2

10 tháng 9 2016

Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad.ab< bc.ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)

\(ad< bc\Rightarrow ad.cd< bc.cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)

Từ (1) và (2) ta được: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

14 tháng 8 2020

a) 

Với A=0

\(\Rightarrow x\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

với A<0

\(\Rightarrow x\left(x-4\right)< 0\)

\(th1\orbr{\begin{cases}x< 0\\x-4>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 0\\x>4\end{cases}\Leftrightarrow4< x< 0\left(vl\right)}\)

\(th2\orbr{\begin{cases}x>0\\x-4< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>0\\x< 4\end{cases}\Leftrightarrow0< x< 4\left(tm\right)}\)

\(\Leftrightarrow0< x< 4\Leftrightarrow x\in\left\{1;2;3\right\}\)

Với A>0

\(\Rightarrow x\left(x-4\right)>0\)

\(th1\orbr{\begin{cases}x>0\\x-4>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>0\\x>4\end{cases}}\Leftrightarrow x>4\)

\(th2\orbr{\begin{cases}x< 0\\x-4< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 0\\x< 4\end{cases}}\Leftrightarrow x< 0\)

14 tháng 8 2020

b) 

Với B=0

\(\Rightarrow\frac{x-3}{x}=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\Rightarrow x=3\\x=0\left(l\right)\end{cases}}\)

vậy x=3 thì B = 0

Với B < 0

\(\Rightarrow\frac{x-3}{x}< 0\)

\(th1\orbr{\begin{cases}x-3>0\\x< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>3\\x< 0\end{cases}\Leftrightarrow3< x< 0\left(vl\right)}\)

\(th2\orbr{\begin{cases}x-3< 0\\x>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 3\\x>0\end{cases}\Leftrightarrow0< x< 3\left(tm\right)\Leftrightarrow x\in\left\{1;2\right\}}\)

Với B > 0

\(th1\orbr{\begin{cases}x-3>0\\x>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>3\\x>0\end{cases}\Leftrightarrow x>3}\)

\(th2\orbr{\begin{cases}x-3< 0\\x< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< 0\end{cases}\Leftrightarrow x< 0}\)

11 tháng 2 2020

Bài 1:

Phải là \(a+d>b+c\) nhé.

17 tháng 6 2017

a)Tử: \(x^5-2x^4+2x^3-4x^2-3x+6\)

\(=x^5+2x^3-3x-2x^4-4x^2+6\)

\(=x\left(x^4+2x^2-3\right)-2\left(x^4+2x^2-3\right)\)

\(=\left(x-2\right)\left(x^4+2x^2-3\right)\)

\(=\left(x-2\right)\left[x^4-x^2+3x^2-3\right]\)

\(=\left(x-2\right)\left[x^2\left(x^2-1\right)+3\left(x^2-1\right)\right]\)

\(=\left(x-2\right)\left(x^2-1\right)\left(x^2+3\right)\)

\(=\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)

Mẫu: \(x^2+2x-8=x^2-2x+4x-8\)

\(=x\left(x-2\right)+4\left(x-2\right)\)

\(=\left(x-2\right)\left(x+4\right)\)

Suy ra \(A=\dfrac{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x^2+3\right)}{\left(x-2\right)\left(x+4\right)}=\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2+3\right)}{x+4}\)

b)\(A=0\Rightarrow\dfrac{\left(x-1\right)\left(x+1\right)\left(x^2+3\right)}{x+4}=0\)

\(\Rightarrow\left(x-1\right)\left(x+1\right)\left(x^2+3\right)=0\)

Dễ thấy: \(x^2+3\ge3>0\forall x\) (vô nghiệm)

Nên \(\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

A có nghĩa khi \(x+4\ne0\Rightarrow x\ne-4\)

A vô nghĩa khi \(x+4=0\Rightarrow x=-4\)

Với N=0

=> a.b=0

=> \(\hept{\begin{cases}a=0\\\forall b\end{cases}}\)hoặc \(\hept{\begin{cases}b=0\\\forall a\end{cases}}\)

Với N>0

=> \(\orbr{\begin{cases}\hept{\begin{cases}a>0\\b>0\end{cases}}\\\hept{\begin{cases}a< 0\\b< 0\end{cases}}\end{cases}}\)

17 tháng 6 2018

Ta có: x < y \(\Rightarrow\) \(\dfrac{a}{m}\)<\(\dfrac{b}{m}\) \(\Rightarrow\) am < bm (m > 0) \(\Rightarrow\) am + am < bm + am \(\Rightarrow\) 2am < m (b + a) \(\Rightarrow\) \(\dfrac{2a}{m}< \dfrac{a+b}{m}\) \(\Rightarrow\) \(\dfrac{a}{m}< \dfrac{a+b}{m}\). Vậy x < r ( 1 )

T. Tự, ta có: x < y \(\Rightarrow\) \(\dfrac{a}{m}< \dfrac{b}{m}\)\(\Rightarrow\) am < bm (m > 0) \(\Rightarrow\) am + bm < bm + bm \(\Rightarrow\) m ( a + b ) < 2bm \(\Rightarrow\) \(\dfrac{2\left(a+b\right)}{m}< \dfrac{b}{m}\) \(\Rightarrow\dfrac{a+b}{m}< \dfrac{b}{m}\). Vậy r < y (2)

Từ (1) và (2), suy ra : x < r < y .

Lưu ý: Trường hợp này chỉ đúng cho m > 0.

Chúc bn học tốt!!!hahahahahaha

22 tháng 8 2016

Ta có: \(\frac{a}{r}=\frac{b}{y}=\frac{c}{d}=4\) => a=4r; b=4y; c=4d

=> \(\frac{a-3b+2c}{r-3y+2d}=\frac{4r-3\cdot4y+2\cdot4d}{r-3y+2d}=\frac{4\left(r-3y+2d\right)}{r-3y+2d}=4\)

Vậy \(\frac{a-3b+2c}{r-3y+2d}=4\)

23 tháng 8 2016

cam on cac ban nha 

linh lam dung roi