Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tớ ra kết quả là 2+\(\frac{5\sqrt{xy}}{x-\sqrt{xy}+y}\) mà thấy số xấu quá :(
a.\(DK:x,y>0\)
Ta co:
\(A=\frac{x+y+2\sqrt{xy}}{xy}.\frac{\sqrt{xy}\left(x+y\right)}{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
b.
Ta lai co:
\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}}{4}=1\)
Dau '=' xay ra khi \(x=y=4\)
Vay \(A_{min}=1\)khi \(x=y=4\)
Bài 1
a, \(\left(\frac{\sqrt{y}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\frac{\sqrt{x}\left(\sqrt{y}-1\right)}{\sqrt{y}-1}\right).\sqrt{y}\left(\sqrt{x}-1\right)\)
=\(\left(\sqrt{y}+\sqrt{x}\right).\sqrt{y}\left(\sqrt{x}-1\right)\)
b,\(\sqrt{8+2.2\sqrt{2}+1}-\sqrt{8-2.2\sqrt{2}+1}\)
=\(\sqrt{\left(\sqrt{8}+1\right)^2}-\sqrt{\left(\sqrt{8}-1\right)^2}\)
=\(\sqrt{8}+1-\left(\sqrt{8}-1\right)\)
=2
Bài 2
a, ĐKXĐ : x\(\ge\)0, x\(\pm\)1
b, Q=\(\left(\frac{\sqrt{x}\left(1+\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}\right)+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\left(\frac{\sqrt{x}\left(1+\sqrt{x}\right)+\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\left(\frac{\sqrt{x}+x+\sqrt{x}-x}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}-\frac{3-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)
=\(\frac{2\sqrt{x}-3+\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)
=\(\frac{3\sqrt{x}-3}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)
=\(\frac{-3}{1+\sqrt{x}}\)
c, de Q = 2 => \(\frac{-3}{1+\sqrt{x}}\)=2 =>1+\(\sqrt{x}\)=-6 =>\(\sqrt{x}\)=-7 =>x vô nghiệm
Bài 1: \(\left(\frac{\sqrt{xy}-\sqrt{y}}{\sqrt{x}-1}+\frac{\sqrt{xy}-\sqrt{x}}{\sqrt{y}-1}\right)\cdot\left(\sqrt{xy}-\sqrt{y}\right)\)
\(=\left(\frac{\sqrt{y}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\frac{\sqrt{x}\left(\sqrt{y}-1\right)}{\sqrt{y}-1}\right)\cdot\left(\sqrt{xy}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{xy}-\sqrt{y}\right)\)
\(\sqrt{9+4\sqrt{2}}-\sqrt{9-4\sqrt{2}}=\sqrt{\left(2\sqrt{2}+1\right)^2}-\sqrt{\left(2\sqrt{2}-1\right)^2}\\ =2\sqrt{2}+1-2\sqrt{2}+1=2\)
Bài 2:
\(Q=\left(\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}}{1+\sqrt{x}}\right)+\frac{3-\sqrt{x}}{x-1}\left(ĐK:x\ge0;x\ne1\right)\)
\(=\frac{-\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-x-\sqrt{x}+x-\sqrt{x}+3-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{-3}{\sqrt{x}+1}\)
Để Q=2
=> \(\frac{-3}{\sqrt{x}+1}=2\)
\(\Leftrightarrow2\left(\sqrt{x}+1\right)=-3\)
\(\Leftrightarrow2\sqrt{x}+2=-3\)
\(\Leftrightarrow2\sqrt{x}=-5\) (vô lí)
Vậy k có giá trị nào của x thỏa mãn Q=2
a. ĐKXĐ : \(\hept{\begin{cases}x\ge0\\y\ge0\\y-x\ne0\end{cases}}\)<=> \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\)
b. \(R=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(\Leftrightarrow R=\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{y-x}\right):\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(\Leftrightarrow R=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right):\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(\Leftrightarrow R=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(\Leftrightarrow R=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{x-\sqrt{xy}+y}\)
\(\Leftrightarrow R=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
c. Với \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\)thì \(\sqrt{xy}\ge0\) ( 1 )
Ta có : \(x-\sqrt{xy}+y=\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}\)
Mà \(\orbr{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\\\left(1\right)\end{cases}}\)=> \(x-\sqrt{xy}+y\ge0\)( 2 )
Từ ( 1 ) và ( 2 ) => \(R\ge0\) ( Đpcm )