Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình mới lớp 7 thui, mình ko bít lớp 8, xin lỗi, tha lỗi cho mình nha.
\(B=\frac{3y^3-y^2-6y^2+2y+3y-1}{2y^3+3y^2-4y^2-6y+2y+3}=\frac{y^2\left(3y-1\right)-2y\left(3y-1\right)+\left(3y-1\right)}{y^2\left(2y+3\right)-2y\left(2y+3\right)+\left(2y+3\right)}=\frac{\left(3y-1\right)\left(y-1\right)^2}{\left(2y+3\right)\left(y-1\right)^2}=\frac{3y-1}{2y+3}\)
b) \(\frac{2B}{2y+3}=\frac{2\left(3y-1\right)}{\left(2y+3\right)^2}\in Z\) =. 2y+3 thuộc U(2) ={ -2;-1;1;2} => x thuộc {-1 ; -2}
hoặc (2y+3)2 =3y -1 =>
hoặc (2y+3)2 =-3y +1 =>
c) B>/1
+Nếu 2y+3 >0 hay y> -3/2
=> 3y -1 > 2y+3 => y >4 => y thuộc { 5;6;7...}
+ Nếu 2y+3<0 hay y < -3/2
=> 3y -1 < 2y+3 => y <4 => y thuộc { -2;-3;-4.....}
\(a.\) Ta có: \(B=\frac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}=\frac{3y^3-\left(6y^2+y^2\right)+\left(2y+3y\right)-1}{2y^3+\left(3y^2-4y^2\right)-\left(6y-2y\right)+3}\)
\(B=\frac{3y^3-y^2-6y^2+2y+3y-1}{2y^2+3y^2-4y^2-6y+2y+3}=\frac{y^2\left(3y-1\right)-2y\left(3y-1\right)+\left(3y-1\right)}{y^2\left(2+3\right)-2y\left(2y+3\right)+\left(2y+3\right)}\)
\(B=\frac{\left(3y-1\right)\left(y-1\right)^2}{\left(2y+3\right)\left(y-1\right)^2}=\frac{3y-1}{2y+3}\)
\(b.\)Ta có: \(\frac{2B}{2y+3}=\frac{2.\frac{3y-1}{2y+3}}{2y+3}=\frac{\frac{2.\left(3y-1\right)}{2y+3}}{2y+3}=\frac{2.\left(3y-1\right)}{\left(2y+3\right)^2}\in Z\)
\(\Rightarrow\)\(2y+3\inƯ\left(2\right)\)mà \(Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)
Vì \(2y+3\)là số nguyên lẻ \(\Rightarrow\)\(2y+3=-1\) hoặc \(2y+3=1\)
\(2y=\left(-1\right)-3=-4\) \(2y=1-3=-2\)
\(y=\left(-4\right)\div2=-2\) \(y=\left(-2\right)\div2=-1\)
Vậy để \(\frac{2B}{2y+3}\in Z\) thì \(y=-2\) hoặc \(y=-1\)
\(c.\)Để \(B\ge1\)\(\Rightarrow\)\(B-1\ge0\) hay \(\frac{3y-1}{2y+3}-1\ge0\)\(\Rightarrow\)\(\frac{y-4}{2y+3}\ge0\)
* Trường hợp 1: \(y-4\ge0\) và \(2y+3>0\)
\(\Rightarrow\) \(y\ge4\) \(\Rightarrow\) \(2y\)\(>-3\)
* \(\Rightarrow\)\(y\)\(>-\frac{3}{2}\)
Vậy \(y\ge4\)
* Trường hợp 2: \(y-4\)\(\le\)\(0\) và \(2y+3\) \(< 0\)
\(\Rightarrow\)\(y\le4\) \(\Rightarrow\)\(2y< 3\)
\(\Rightarrow\)\(y< \frac{3}{2}\)
Vậy \(y\le4\)
Đùa game, đánh xong rồi ấn nhầm nút hủy :) ok im fine
Bài 1: Câu hỏi của nguyễn hà - Toán lớp 8 | Học trực tuyến
Bài 2:
a) \(B=\frac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)
\(B=\frac{3y\left(y^2-2y+1\right)-\left(y^2-2y+1\right)}{2y\left(y^2-2y+1\right)+3\left(y^2-2y+1\right)}\)
\(B=\frac{\left(y-1\right)^2\left(3y-1\right)}{\left(y-1\right)^2\left(2y+3\right)}=\frac{3y-1}{2y+3}\)
b) \(\frac{2D}{2y+3}=\frac{2\left(3y-1\right)}{\left(2y+3\right)^2}\Leftrightarrow6y-2⋮\left(2y+3\right)^2\)
Dễ thấy tử số là số chẵn, mẫu số là số lẻ nên \(\frac{2D}{2y+3}\)không là số nguyên
Mặt khác vì mọi số nguyên đều chia hết cho 1 và -1
\(\Rightarrow\left[{}\begin{matrix}2y+3=1\\2y+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\)
c) \(B>1\Leftrightarrow\frac{3y-1}{2y+3}>1\)
\(\Leftrightarrow3y-1>2y+3\)
\(\Leftrightarrow y>4\)
Vậy....
#)Giải :
a) Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\left\{{}\begin{matrix}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=20\\y=12\\z=42\end{matrix}\right.\)
b) Ta có : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(7y=5z\Rightarrow\frac{y}{7}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\left\{{}\begin{matrix}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=20\\y=30\\z=42\end{matrix}\right.\)
c) Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\left\{{}\begin{matrix}\frac{x}{9}=3\\\frac{y}{12}=3\\\frac{z}{20}=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)
d) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{12x}{18}=\frac{12y}{6}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+5}=\frac{12\left(x+y+z\right)}{18+16+15}=\frac{12.49}{49}=12\)
\(\left\{{}\begin{matrix}\frac{12x}{18}=12\\\frac{12y}{16}=2\\\frac{12z}{15}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12x=216\\12y=192\\12z=180\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)(vì \(5x+y-z=28\))
⇒ \(x=20;y=12;z=42\)
b) \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)(vì \(x-y+z=32\))
⇒ \(x=20;y=30;z=42\)
c) \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)
⇒ x= -18; y= -24; z= -30
d) \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)
⇒ x=18; y=16; z=15
a) \(=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)
\(=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=\frac{-7}{3}\)
b)\(=\frac{3x\left(x+y\right)}{y}\)
c) \(\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)
\(=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)
a) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=-\frac{7}{3}.\)
b) \(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\frac{3x\left(x+y\right)}{y}=\frac{3x^2+3xy}{y}\)
c) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)
d) \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\frac{x-z}{2}\)
h) \(\frac{3x\left(1-x\right)}{2\left(x-1\right)}=-\frac{3x\left(x-1\right)}{2\left(x-1\right)}=\frac{-3x}{2}\)
j) \(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)
Câu b) bạn xem lại nhé.
Học tốt ^3^
a: x-y-z=0
=>x=y+z; y=x-z; z=x-y
\(K=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{z+y}{z}=\dfrac{y\cdot\left(-z\right)\cdot x}{xyz}=-1\)
b: Tham khảo: