\(\frac{1}{2x-2}\)+ \(\frac{1}{2x+2}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

a) \(ĐKXĐ:x\ne\pm1\)

 \(Q=\frac{1}{2x-2}+\frac{1}{2x+2}+\frac{x^2}{1-x^2}\)

\(\Leftrightarrow Q=\frac{1}{2\left(x-1\right)}+\frac{1}{2\left(x+1\right)}-\frac{x^2}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow Q=\frac{x+1+x-1-2x^2}{2\left(x+1\right)\left(x-1\right)}\)

\(\Leftrightarrow Q=\frac{-2x^2+2x}{2\left(x+1\right)\left(x-1\right)}\)

\(\Leftrightarrow Q=\frac{-1}{x+1}\)

b) Khi \(\left|x+1\right|=2\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-3\left(tm\right)\end{cases}}\)

Thay \(x=-3\)vào Q ta được :

 \(Q=\frac{-1}{-3+1}=\frac{1}{2}\)

c) Để \(Q\)có giá trị nguyên \(\Leftrightarrow-1⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(-1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{-2;0\right\}\)

Vậy để Q có giá trị nguyên \(\Leftrightarrow x\in\left\{-2;0\right\}\)

23 tháng 7 2020

c) Bạn lấy mỗi giá trị nguyên nhỏ nhất của x = -2 thôi nhé !

Xin lỗi vì đọc nhầm đề

a: \(A=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)

\(=\dfrac{2x+1}{x-1}\cdot\dfrac{x+1}{2x+1}=\dfrac{x+1}{x-1}\)

b: Thay x=1/2 vào A, ta được:

\(A=\dfrac{\dfrac{1}{2}+1}{\dfrac{1}{2}-1}=\dfrac{3}{2}:\dfrac{-1}{2}=-3\)

c: Để A là số nguyên thì \(x-1+2⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow x\in\left\{2;0;3\right\}\)

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??

30 tháng 10 2020

a) Đk: x > 0 và x khác +-1

Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)

A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)

A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)

A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)

b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)

Vậy MaxA = 1/4 <=> x = 2

14 tháng 12 2020

a, \(A=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{x+2}\right)\left(\frac{2}{x}-1\right)\)

\(=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\left(\frac{2-x}{x}\right)\)

\(=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}=\frac{-4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=\frac{-4}{x+2}\)

b, Ta có : \(2x^2+x=0\Leftrightarrow x\left(2x+1\right)=0\Leftrightarrow x=0;-\frac{1}{2}\)

Thay x = 0 vào biểu thức A ta được : \(\frac{-4}{0+2}=\frac{-4}{2}=-2\)

Thay x = -1/2 vào biểu thức A ta được : \(\frac{-4}{-\frac{1}{2}+2}=\frac{-4}{\frac{3}{2}}=-\frac{2}{3}\)

c, Ta có : \(\frac{-4}{x+2}=\frac{1}{2}\Leftrightarrow-8=x+2\Leftrightarrow x=-10\)

d, Ta có : \(\frac{-4}{x+2}\)hay \(x+2\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

x + 21-12-24-4
x-1-30-42-6