
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu

Ta có:
\(2^{3^{2^3}}=2^{3^8}=2^{6561}=2^{3.2187}=\left(2^3\right)^{2187}=8^{2187}\)
\(3^{2^{3^2}}=3^{2^9}=3^{512}\)
Vì: 8 > 3 và 2187 > 512
\(\Rightarrow8^{2187}>3^{512}\)
\(\Rightarrow2^{3^{2^3}}>3^{2^{3^2}}\)
Vậy: \(2^{3^{2^3}}>3^{2^{3^2}}\)

a) -3/4.x - x = 1
=> x.(-3/4 - 1) = 1
=> x . -7/4 = 1
=> x = 1 : -7/4
=> x = -4/7
b) x5 = (2.x)4
=> x5 = 24 . x4
=> x5 : x4 = 24
=> x5 - 4 = 16
=> x = 16
\(-\frac{3}{4}\cdot x-x=1\)
\(\Rightarrow x\left(-\frac{3}{4}-1\right)=1\)
\(\Rightarrow-\frac{7}{4}x=1\)
\(\Rightarrow x=-\frac{4}{7}\)
\(x^5=\left(2x\right)^4\)
\(\Rightarrow x^5=16x^4\)
\(\Rightarrow x^5-16x^4=0\)
\(\Rightarrow x^4.x-16x^4=0\)
\(\Rightarrow x^4\left(x-16\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^4=0\\x-16=0\end{cases}\Rightarrow}x=16\)

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\); \(\frac{1}{3^2}< \frac{1}{2\cdot3}\); \(\frac{1}{4^2}< \frac{1}{3\cdot4}\); ....; \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)
\(\Rightarrow S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)
\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(\Rightarrow S< 1-\frac{1}{9}\)
\(\Rightarrow S< \frac{8}{9}\) (1)
\(\frac{1}{2^2}>\frac{1}{2\cdot3};\frac{1}{3^2}>\frac{1}{3\cdot4};\frac{1}{4^2}>\frac{1}{4\cdot5};...;\frac{1}{9^2}>\frac{1}{9\cdot10}\)
\(\Rightarrow S>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9\cdot10}\)
\(\Rightarrow S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow S>\frac{1}{2}-\frac{1}{10}\)
\(\Rightarrow S>\frac{2}{5}\) (2)
(1)(2) => 2/5 < S < 8/9
\(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}< \frac{1}{a^2}\)
\(\frac{1}{a}-1-\frac{1}{a}=-1< \frac{1}{a^2}\) Vì \(\frac{1}{a^2}>0;-1< 0\)
Khi đó thì ĐỀ SAI

15S+1=15+15.42+15.44+...+15.420+1
=16+15.42+15.44+...+15.420
=42+15.42+15.44+...+15.420
=16.42+15.44+...+15.420 =44+15.44+...+15.420=16.44+...+15.420=16.418+15.420=16.420=422
vậy x-5=22 <=>x=27

Giúp mình bài này nữa với. Khó quá >^<
Học sinh lớp 6A khi chia tổ. Nếu chia 4 tổ; 5 tổ; 8 tổ đều vừa đủ. Tính số học sinh của lớp 6A. Biết rằng số h/s lớp đó có khoảng từ 35 đến 45 em.
Nhanh giúp mik với chứ chiều mình thi rồi ToT
2A=2+2^2+...+2^2019
=>A=2^2019-1
=>A và B là hai số liên tiếp
\(Q = 5 + 5^{2} + . . . + 5^{2024}\)
\(5 Q = 5 \left(\right. 5 + 5^{2} + 5^{3} + . . . + 5^{2024} \left.\right)\)\(5 Q = 5^{2} + 5^{3} + 5^{4} + . . . + 5^{2025}\)
\(5 Q - Q = \left(\right. 5^{2} + 5^{3} + 5^{4} + . . . + 5^{2025} \left.\right) - \left(\right. 5 + 5^{2} + 5^{3} + . . . + 5^{2024} \left.\right)\)
\(4 Q = 5^{2025} - 5\)
\(Q = \frac{5^{2025} - 5}{4}\)\(Q = \frac{5 \left(\right. 5^{2024} - 1 \left.\right)}{4}\)
\(Q = \frac{5}{4} \left(\right. 5^{2024} - 1 \left.\right)\).