Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

d) ( n + 7 )2 - ( n - 5 )2
= n2 + 14n + 49 - n2 + 10n - 25
= 24n + 24
= 24 ( n + 1 ) chia hết cho 24 ( đpcm )
e)
( 7n + 5 )2 - 25
= ( 7n + 5 )2 - 52
= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )
= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )

\(n^3-3n^2+2n\)
\(=n^3-n^2-2n^2+2n\)
\(=n^2\left(n-1\right)-2n\left(n-1\right)\)
\(=\left(n^2-2n\right)\left(n-1\right)\)
\(=n\left(n-2\right)\left(n-1\right)⋮2.3=6\)

a, \(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n.\frac{9}{2}=288\)
\(\Rightarrow2^n=64\)
\(\Rightarrow n=6\)
\(KL....\)
b, đề hơi sai pn ạ
c, \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\)chia hết cho 55
d, \(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
\(\Rightarrow5A=5+5^2+5^3+5^4+...+5^{50}+5^{51}\)
\(\Rightarrow5A-A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
a, 2−1.2n+4.2n=9.25
⇒2n.92 =288
⇒2n=64
⇒n=6
KL....
b, đề hơi sai pn ạ
c, 76+75−74=74(72+7−1)=74.55chia hết cho 55
d, A=1+5+52+53+...+549+550
⇒5A=5+52+53+54+...+550+551
⇒5A−A=551−1
⇒A=551−14

Ta có : \(n^3\left(n^2-7\right)^2-36n\)
\(=n[\left(n^3-7n\right)^2-36]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=n[\left(n-3\right)\left(n^2+3n+2\right)][\left(n+3\right)\left(n^2-3n+2\right)]\)
\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)\)
là tích của 7 số nguyên liên tiếp
\(\Rightarrow n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)⋮7\)
hay \(n^3\left(n^2-7\right)^2-36n⋮7\forall n\inℤ\)

Ta có : n(n+5) - (n-3)(n+2) = n2 + 5n - n2 - 2n + 3n + 6
= 6n + 6
= 6(n+1) \(⋮\) 6 với mọi n
Vậy n(n+5) - (n-3)(n+2) chia hết cho 6 với mọi n là số nguyên
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2+3n+2n+6\)
\(=\left(n^2-n^2\right)-\left(5n-3n-2n\right)+6\)
\(=6⋮6\) (đpcm)
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.

\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=\left(n+1\right)n\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
vì tích của 3 số tự nhiên liên tiếp chia hết cho 6
Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)

a: \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\cdot\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)=2n\cdot2\left(n+3\right)=4n\left(n+3\right)\)
Vì n;n+3 có khoảng cách giữa hai số là 3 là số lẻ
nên n(n+3)⋮2
=>4n(n+3)⋮4*2=8
=>\(\left(2n+3\right)^2-9\) ⋮8
b: \(\left(4n+3\right)^2-25\)
\(=\left(4n+3+5\right)\left(4n+3-5\right)\)
=(4n+8)(4n-2)
\(=4\left(n+2\right)\cdot2\cdot\left(2n-1\right)=8\left(n+2\right)\left(2n-1\right)\) ⋮8

1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)
2: \(A=n^3+11n\)
\(=n^3-n+12n\)
\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)
3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.