K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

b. Hoành độ giao điểm  của (P) và đường thẳng d là nghiệm của phương trình:

\(x^2-4x+3=-mx+2019\)

<=> \(x^2+\left(m-4\right)x-2016=0\)(1)

Để (P) căt d tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có 2 nghiệm phân biệt

<=> \(\Delta>0\)

<=> \(\left(m-4\right)^2+4.2016>0\)luôn đúng với mọi m

Vậy với mọi m \(\in R\) đường thẳng d cắt parapol  ( P ) tạu hai điểm phân biệt.

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2-4x+1=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+5=0\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-5\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;-2\right);\left(5;6\right)\right\}\)

c: Điểm M,N ở đâu vậy bạn?

15 tháng 8 2021

mình nghĩ pt (P) : y = ax^2 - bx + c chứ ? 

a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)

(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1) 

(P) đi qua điểm C(-1;1)  <=> \(a+b+c=1\)(2) 

Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)

Vậy pt Parabol có dạng \(x^2-x-1=y\)

15 tháng 8 2021

Bài 1b 

(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)

(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)

Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)

tương tự nhé 

4 tháng 9 2021

Tìm Parabol (P): y=ax2​+bx+c  đi qua điểm A(1;0) và có tung độ đỉnh bằng -1

4 tháng 9 2021

(P) có đỉnh là I(-1;5) => \(-\frac{b}{2a}=-1\Rightarrow b=2a\)  (1)

và (P) đi qua I(-1; 5) => tại x = -1; y = 5 thì a - b + c = 5                                     (2)

(P) đi qua điểm A(1; 1) => tại x = 1; y = 1 thì a + b + c = 1(3)

thế (1) vào (2): -a + c = 5

thế (1) vào (3): 3a + c = 1 

giải hệ phtrinh ta được a = -1; c = 4

=> b = 2a = -2

giá trị biểu thức 3a + 2b + c = -3 - 4 + 4 = -3

4 tháng 9 2021

cảm ơn bạn rất nhiều