Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ biết câu a thôi nha bạn, còn câu b để mk suy nghĩ đã nha...
a, Thay \(x=0\) vào f(x) và g(x):
=> \(f\left(0\right)=g\left(0\right)\)
Ta có: \(f\left(0\right)=a.0+b=b\)
\(g\left(0\right)=c.0+d=d\)
Mà \(f\left(0\right)=g\left(0\right)\) nên:
=> b = d (đpcm)
Thay \(x=1\) vào f(x) và g(x):
=> \(f\left(1\right)=g\left(1\right)\)
Lạt có: \(f\left(1\right)=a.1+b=a+b\)
\(g\left(1\right)=c.1+d=c+d\)
Mà \(f\left(1\right)=g\left(1\right)\) nên:
=> \(a+b=c+d\)
=> \(a=c\) (đpcm)
Chúc bạn học tốt! Nhớ tick theo dõi cho mk vs. Mk xin chân thành cảm ơn.
Bài làm:
Ta có: \(P\left(x\right)=Q\left(x\right)\)
\(\Leftrightarrow ax+b=cx+d\)
Áp dụng phương pháp đồng nhất hệ số ta được:
\(\Rightarrow\hept{\begin{cases}ax=cx\\b=d\end{cases}}\Rightarrow\hept{\begin{cases}a=c\\b=d\end{cases}}\)
=> đpcm
Mình có cách dễ dàng hơn nhiều
\(P\left(x\right)=Q\left(x\right)=ax+b=cx+d\)
\(\Rightarrow P\left(0\right)=Q\left(0\right)=a.0+b=c.0+d=b=d\)
\(P\left(1\right)=Q\left(1\right)=a+b=c+d\). Mà \(b=d\Rightarrow a=c\left(đpcm\right)\)
P(x)=Q(x)
Suy ra P(0)=Q(0)
suy ra a x0+b=c x0+d
suy ra b=d (1)
ax +b =cx +d(2)
từ 1 và 2 suy ra a=c
https://olm.vn/hoi-dap/detail/240754432073.html
Dạng giống nha
cho \(f\left(x\right)=ax^3+bx^2+cx+d\)biết \(a+c=b+d\).Chứng minh \(x=-1\)là nghiệm của đa thức f(x)
P(x)=Q(x) => P(x) - Q(x) = 0 => ax + b - cx - d = 0 => x(a-c) + (b-d) = 0
=> a - c = 0 và b-d = 0 => a=c và b=d