Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
ĐKXĐ: $x\neq \pm 2$
b.
\(P=\left[\frac{4(x-2)}{(x+2)(x-2)}+\frac{3(x+2)}{(x+2)(x-2)}-\frac{5x+2}{(x-2)(x+2)}\right].\frac{x+2}{2}\)
\(=\frac{4(x-2)+3(x+2)-(5x+2)}{(x-2)(x+2)}.\frac{x+2}{2}=\frac{2(x-2)}{(x-2)(x+2)}.\frac{x+2}{2}=1\)
a) \(A=\dfrac{x^2-4x+4}{5x-10}.\) ĐK: \(x\ne2.\)
b) \(A=\dfrac{x^2-4x+4}{5x-10}=\dfrac{\left(x-2\right)^2}{5\left(x-2\right)}=\dfrac{x-2}{5}.\)
c) \(Thay\) \(x=-2018:\) \(\dfrac{-2018-2}{5}=-404.\)
a: ĐKXĐ: x<>1; x<>-1
b: \(A=\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-4}{x-1}\)
c: Để A là số nguyên thì x-1-3 chia hết cho x-1
=>\(x-1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;0;4;-2\right\}\)
a ĐKXĐ: x<>0; x<>3
b: Sửa đề; x^2-6x+9/x^2-3x
\(A=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
c: Khi x=5 thì \(A=\dfrac{5-3}{5}=\dfrac{2}{5}\)
a: ĐKXĐ: x<>-1
b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)
\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)
c: P=2
=>x^2-2x=2x+2
=>x^2-4x-2=0
=>\(x=2\pm\sqrt{6}\)
\(1,\\ a,\dfrac{x^2}{x+1}+\dfrac{x}{x+1}=\dfrac{x^2+x}{x+1}=\dfrac{x\left(x+1\right)}{x+1}=x\)
\(b,\left(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}\right):\dfrac{x+y}{2x}=\left(\dfrac{4xy}{2\left(x-y\right)\left(x+y\right)}+\dfrac{\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}\right).\dfrac{2x}{x+y}=\dfrac{4xy+x^2-2xy+y^2}{2\left(x-y\right)\left(x+y\right)}.\dfrac{2x}{x+y}=\dfrac{2x\left(x^2+2xy+y^2\right)}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{2x\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{x}{x-y}\)
a: ĐKXĐ: x<>2; x<>-2; x<>0; x<>3
b: \(P=\left(\dfrac{-\left(x+2\right)}{x-2}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)
\(=\dfrac{-x^2-4x-4+4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{\left(x-3\right)}=\dfrac{-4x^2\left(x-2\right)}{\left(x+2\right)\left(x-3\right)}\)
c: 2(x-1)=6
=>x-1=3
=>x=4
Thay x=4 vào P, ta đc:
\(P=\dfrac{-4\cdot4^2\cdot\left(4-2\right)}{\left(4+2\right)\left(4-3\right)}=\dfrac{-64\cdot2}{6}=\dfrac{-128}{6}=-\dfrac{64}{3}\)
a) ĐKXĐ: x - 2 \(\ne\)0 x \(\ne\)2
x + 2 \(\ne\)0 => x\(\ne\)-2 =>x \(\ne\)\(\pm\)2 và x \(\ne\)-10
x2 - 4 \(\ne\)0 x \(\ne\)\(\pm\)2
x + 10 \(\ne\)0 x \(\ne\)-10
b) Ta có: P = \(\left(\frac{x+5}{x-2}+\frac{3x}{x+2}-\frac{4x^2}{x^2-4}\right)\cdot\frac{x^2+2x}{x+10}\)
P = \(\left(\frac{\left(x+5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{x\left(x+2\right)}{x+10}\)
P = \(\left(\frac{x^2+2x+5x+10+3x^2-6x-4x^2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{x\left(x+2\right)}{x+10}\)
P = \(\frac{x+10}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x\left(x+2\right)}{x+10}\)
P = \(\frac{x}{x-2}\)
c)Với x \(\ne\)\(\pm\)2 và x \(\ne\)-10
Ta có: x2 - x - 6 = 0
=> x2 - 3x + 2x - 6 = 0
=> x(x - 3) + 2(x - 3) = 0
=> (x + 2)(x- 3) = 0
=> \(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-2\left(ktm\right)\\x=3\end{cases}}\)
Với x = 3 => P = \(\frac{3}{3-2}=3\)