Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\hept{\begin{cases}x^4\ge0\forall x\\x^2\ge0\forall x\end{cases}\Rightarrow x^4+x^2\ge0\forall x}\)
\(\Rightarrow A\left(x\right)=x^4+x^2+4\ge4\forall x\)
Mà \(4>0\) \(\Rightarrow A\left(x\right)>0\forall x\in R\) (ĐPCM)
Vì
x
4
≥ 0∀x
x
2
≥ 0∀x
⇒x
4
+ x
2
≥ 0∀x
⇒A x = x
4
+ x
2
+ 4 ≥ 4∀x
Mà 4 > 0 ⇒A x > 0∀x ∈ R (ĐPCM)
gọi đa thức f ( x )= a x^4 + bx^3+c x ^2 + d x +e = a x^4 - bx^3+cx^2-dx+e
áp dụng hệ số bất định => b = -b ; d=-d => b=0;d=0 => đpcm
a,R(x)=P(x)+Q(x)=-4x\(^4\)-2x+x\(^2\)+3x\(^3\)+1-2-3x\(^3\)+2x+x\(^5\)+5x\(^4\)
=x\(^5\)+(-4x\(^4\)+5x\(^4\))+(3x\(^3\)-3x\(^3\))+x\(^2\)+(-2x+2x)+(1-2)
=x\(^5\)+x\(^4\)+x\(^2\)-1
R(-1)=(-1)\(^5\)+(-1)\(^4\)+(-1)\(^2\)-1
=0
Q(2)=a.22+b.2+c=a.4+b.2+c
Q(-1)=a.(-1)2+b.(-1)+c=a-b+c
Ta có Q(2)+Q(-1)=4a+2b+c+a-b+c=5a+b+2c=0
Như vậy Q(2) và Q(-1) là 2 số đối nhau
=> Tích của chúng luôn nhỏ hơn hoặc bằng 0 ( Bằng 0 khi cả 2 số đều bằng 0)
b) Q(x)=0 với mọi x
=>Q(0)=a.02+b.0+c=0
=>0+0+c=0
=>c=0
Q(1)=a.12+b.1+c=a+b+c=0
Theo câu a, ta có Q(-1)=a-b+c=0 ( vì giả thiết cho đa thức =0 với mọi x)
=>Q(1)-Q(-1)=a+b+c-(a-b+c)=a+b+c-a+b-c=0
=>2b=0
=>b=0
Thay b=0 và c=0 vào đa thức Q(1) ta có a+0+0=0
=>a=0
Vậy a=b=c=0
Bài 1:
ta có M(x)=a.x2+5.x-3 và x=\(\frac{1}{2}\)
Cho M=0
\(\Rightarrow\)a.1/22+5.1/2-3=0
a.1/4+5/2-3=0
a.1/4-1/2=0
a.1/4=1/2
a=1/2:1/4
a=2
Bài 2
Q(x)=x4+3.x2+1
=x2.x2+1,5.x2+1,5.x2+1,5.1,5-1,25
=x2.(x2+1,5)+1,5.(x2+1,5)-1,25
=(x2+1,5)(x2+1,5)-1,25
\(\Rightarrow\)(x2+1,5)2 \(\ge\)0 với \(\forall\)x
\(\Rightarrow\)(x2+1,5)2-1,25\(\ge\)1,25 > 0
Vậy đa thức Q ko có nghiệm