Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thương của phép chia đa thức \(f\left(x\right)\)cho \(x-1\)và cho \(x+2\), theo thứ tự là \(A\left(x\right),B\left(x\right)\)và dư theo thứ tự là \(4\) và \(1\)
Ta có:
\(f\left(x\right)=\left(x-1\right).A\left(x\right)+4\)
nên \(\left(x+2\right)f\left(x\right)=\left(x-1\right)\left(x+2\right).A\left(x\right)+4\left(x+2\right)\) \(\left(1\right)\)
\(f\left(x\right)=\left(x+2\right).B\left(x\right)+1\)
nên \(\left(x-1\right)f\left(x\right)=\left(x+2\right)\left(x-1\right).B\left(x\right)+1\left(x-1\right)\) \(\left(2\right)\)
Lấy \(\left(1\right)\)trừ \(\left(2\right)\) vế theo vế, ta có:
\(\left[\left(x+2\right)-\left(x-1\right)\right]f\left(x\right)=\left(x-1\right)\left(x+2\right)\left[A\left(x\right)-B\left(x\right)+4\left(x+2\right)-1\left(x-1\right)\right]\)
\(\Leftrightarrow3f\left(x\right)=\left(x-1\right)\left(x+2\right)\left[A\left(x\right)-B\left(x\right)\right]+3x+9\)
Do đó: \(f\left(x\right)=\left(x-1\right)\left(x+2\right)\frac{A\left(x\right)-B\left(x\right)}{3}+\left(x+3\right)\)
\(\Leftrightarrow f\left(x\right)=5x^2\left(x-1\right)\left(x+2\right)+\left(x+3\right)\)
trong đó, bậc của \(x+3\) nhỏ hơn bậc của \(\left(x-1\right)\left(x+2\right)\)
Vậy, dư của phép chia \(f\left(x\right)\) cho \(\left(x-1\right)\left(x+2\right)\)là \(x+3\)
Gọi thương của phép chia đa thức f(x)f(x)cho x−1x−1và cho x+2x+2, theo thứ tự là A(x),B(x)A(x),B(x)và dư theo thứ tự là 44 và 11
Ta có:
f(x)=(x−1).A(x)+4f(x)=(x−1).A(x)+4
nên (x+2)f(x)=(x−1)(x+2).A(x)+4(x+2)(x+2)f(x)=(x−1)(x+2).A(x)+4(x+2) (1)(1)
f(x)=(x+2).B(x)+1f(x)=(x+2).B(x)+1
nên (x−1)f(x)=(x+2)(x−1).B(x)+1(x−1)(x−1)f(x)=(x+2)(x−1).B(x)+1(x−1) (2)(2)
Lấy (1)(1)trừ (2)(2) vế theo vế, ta có:
[(x+2)−(x−1)]f(x)=(x−1)(x+2)[A(x)−B(x)+4(x+2)−1(x−1)][(x+2)−(x−1)]f(x)=(x−1)(x+2)[A(x)−B(x)+4(x+2)−1(x−1)]
⇔3f(x)=(x−1)(x+2)[A(x)−B(x)]+3x+9⇔3f(x)=(x−1)(x+2)[A(x)−B(x)]+3x+9
Do đó: f(x)=(x−1)(x+2)A(x)−B(x)3+(x+3)f(x)=(x−1)(x+2)A(x)−B(x)3+(x+3)
⇔f(x)=5x2(x−1)(x+2)+(x+3)