Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(ax^2+bx+c\right)\left(x+1\right)=ax^3+\left(a+b\right)x^2+\left(b+c\right)x+c\)
đồng nhất đa thức trên với đa thức đã cho ta được
\(\left\{{}\begin{matrix}a=1\\a+b=8\\b+c=19\\c=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=7\\c=12\end{matrix}\right.\)
3 phần kia làm tương tự
b: \(\left(ax^2+bx+c\right)\left(x+3\right)\)
\(=ax^3+3ax^2+bx^2+3bx+cx+3c\)
\(=ax^3+x^2\left(3a+b\right)+x\left(3b+c\right)+3c\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}3c=0\\3b+c=-3\\3a+b=2\\a=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=0\\b=-1\\a=1\end{matrix}\right.\)
c: \(\left(x^2+cx+2\right)\left(ax+b\right)\)
\(=a\cdot x^3+bx^2+ac\cdot x^2+bc\cdot x+2a\cdot x+2b\)
\(=a\cdot x^3+x^2\left(b+ac\right)+x\left(bc+2a\right)+2b\)
Theo đề, ta có: 2b=-2; bc+2a=0; b+ac=1; a=1
=>b=-1; a=1; c=2
d: \(\left(x^2+cx+1\right)\left(ax+b\right)\)
\(=a\cdot x^3+bx^2+ac\cdot x^2+bc\cdot x+a\cdot x+b\)
\(=a\cdot x^3+x^2\left(b+ac\right)+x\left(bc+a\right)+b\)
Theo đề, ta có:
b=2; bc+a=-3; b+ac=0; a=1
=>b=2; a=1; bc=-3-a=-3-1=-4
=>b=2; a=1; 2c=-4
=>b=2; a=1; c=-2
12/
x=2011
=>2012=x+1
thay x+1=2012 ta được:
x2011-(x+1).x2010+(x+1).x2009-(x+1)x2008+...-(x+1).x2+(x+1).x-1
=x2011-x2011-x2010+x2010+x2009-x2009-x2008+...-x3-x2+x2+x-1
=x-1
thay x=2011 ta được:
2011-1=2010
Vậy x2011-2012x2010+2012x2009-2012x2008+...-2012x2+2012x-1=2010
x^4 | ax^3 | bx^2 | cx | d | du | |
x=0 | 0 | 0 | 0 | 0 | 12 | 12 |
x=1 | 1 | a | b | c | 12 | 12 (a+b+c=-1) |
x=2 | 16 | 8a | 4b | c | 12 | 0 (4a+2b+c=-14) |
x=4 | 256 | 64a | 16b | 4c | 12 | 60 (64a+16b+4c=-208) |
ta co
\(\hept{\begin{cases}a+b+c=-1\\4a+2b+c=-14\\64a+16b+4c=-208\end{cases}}\)
giai he
\(\hept{\begin{cases}a=-2\\b=-7\\c=8\end{cases}}\)
pt<=>\(a^4-2a^3-7a^2+8a+12\)
b) tu lam
Lời giải:
\(\left\{\begin{matrix} P(1)=a+b+c+d=100\\ P(0)=d=1\\ P(-1)=-a+b-c+d=50\\ P(2)=8a+4b+2c+d=120\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} d=1\\ a+b+c=99(1)\\ -a+b-c=49(2)\\ 8a+4b+2c=119(3)\end{matrix}\right.\)
Từ $(1); (2)\Rightarrow 2b=148\Rightarrow b=74$
Thay $b=74$ vào $(1); (3)$ ta có:
$a+c=25; 8a+2c=-177$
$\Leftrightarrow a+c=25; 4a+c=\frac{-177}{2}$
$\Rightarrow 3a=\frac{-227}{2}\Rightarrow a=\frac{-227}{6}$
$c=25-a=\frac{377}{6}$
Vậy $P(x)=\frac{-227}{6}x^3+74x^2+\frac{377}{6}x+1$
Do đó $P(3)=-166$
Theo định lý Bezout ta có:
\(f\left(1\right)=f\left(2\right)=f\left(-3\right)=2;f\left(-2\right)=-10\)
Ta có:
\(f\left(1\right)=a+b+c+d+1=2\)
\(f\left(2\right)=8a+4b+2c+d+16=2\)
\(f\left(-3\right)=-27a+9b-3c+d+81=2\)
\(f\left(-2\right)=-8a+4b-2c+d+16=-10\)
Đến đây bạn dùng Casio fx 580 tìm nghiệm hộ mình nhé !