K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

Bn viết nhầm đề bài rồi.

Ta có : P (x) =ax+ bx +c

        \(\Rightarrow\)P(-1) = a - b + c

         \(\Rightarrow\)P(2) = 4a+2b + c

        \(\Rightarrow\)P(-1) + P(2) = 5a + b +2c = 0

        \(\Rightarrow\)P(-1) = - P(2)

         \(\Rightarrow\)P(-1)\(\times\)P(2) \(\le\)0

15 tháng 5 2017

Ta có:\(P\left(-2\right)=4a-2b+c\)

          \(P\left(1\right)=a+b+c\)

Lấy:\(P\left(1\right)+P\left(-2\right)=5a-b+2c=0\)(theo đề bài)

                     Vì vậy:\(P\left(1\right)=-P\left(-2\right)\)(Hai số đối nhau tổng bằng 0 )

Do đó:\(P\left(-2\right).P\left(1\right)\le0\)( . là dấu nhân nha bn)

23 tháng 3 2016

SAI ĐỀ:

Chứng tỏ rằng nếu 5a-b+2c=0 thì P(-2).P(1) nhỏ hơn(hoặc bằng) 0

20 tháng 5 2018

Ta có :

f(1) + f(-2) = a + b + c + 4a - 2b + c = 5a - b + 2c = 0

\(\Rightarrow\)f(1) = -f(-2)

Do đó : f(1) . f(-2) = -[f(-2)]2 \(\le\)0

11 tháng 4 2021

a,Q(2) = 4a+2b+c

Q(-1)=a-b+c

Ta có: Q(2)+Q(-1)= 4a+2b+c+a-b+c=5a+b+2c

mà 5a+b+2c=0 => Q(2)=-Q(-1)

Nên Q(2).Q(-1)≤≤0                                                                                       b)Vì Q(x)=0 với mọi x nên ta có:

Q(0)= 0.a+b.0+c=0=> c=0(1)

Q(1)= a+b+c=0 mà c=0 => a+b=0(2)

Q(-1)=a-b+c=0 mà c=0 => a-b=0(3)

từ (1) và (2) => a=b=c=0 khi Q(x)=0 với mọi x

11 tháng 4 2021

a,Q(2) = 4a+2b+c

Q(-1)=a-b+c

Ta có: Q(2)+Q(-1)= 4a+2b+c+a-b+c=5a+b+2c

mà 5a+b+2c=0 => Q(2)=-Q(-1)

Nên Q(2).Q(-1)≤≤0

b)Vì Q(x)=0 với mọi x nên ta có:

Q(0)= 0.a+b.0+c=0=> c=0(1)

Q(1)= a+b+c=0 mà c=0 => a+b=0(2)

Q(-1)=a-b+c=0 mà c=0 => a-b=0(3)

từ (1) và (2) => a=b=c=0 khi Q(x)=0 với mọi x

30 tháng 3 2021

giúp tôi

30 tháng 3 2021

khó ghê