Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Delta=\left(2m+2\right)^2-4\cdot4m=4m^2+8m+4-16m=\left(2m-2\right)^2\)
Để phương trình có nghiệm kép thì 2m-2=0
hay m=2
b: Thay x=4 vào pt, ta được:
\(16-8\left(m+1\right)+4m=0\)
=>16-8m-4+4m=0
=>12-4m=0
hay m=3
c: Để phương trình có hai nghiệm cùng dấu thì 2(m+1)>0
=>m>-1
e: Để phương trình có hai nghiệm dương thì \(\left\{{}\begin{matrix}m+1>0\\4m>0\end{matrix}\right.\Leftrightarrow m>0\)
\(x^2+4x-3m+1=0\)
Để (1) có 2 nghiệm phân biệt x1, x2 thì \(\Delta'=2^2-\left(3m+1\right)=-3m+3>0\)\(\Leftrightarrow\)\(m< 1\)
a) pt (1) có 1 nghiệm âm => nghiệm còn lại dương => 2 nghiệm trái dấu => \(x_1x_2< 0\)
Vi-et: \(x_1x_2=1-3m< 0\)\(\Leftrightarrow\)\(m< \frac{1}{3}\)
b) pt có 2 nghiệm phân biệt \(\hept{\begin{cases}x_1=-2-\sqrt{3-3m}\\x_1=-2+\sqrt{3-3m}\end{cases}}\)
Dễ thấy \(x_1< x_2\) nên ta cần tìm m để \(x_2=-2+\sqrt{3-3m}< 2\)
\(\Leftrightarrow\)\(\sqrt{3-3m}< 4\)\(\Leftrightarrow\)\(m>\frac{-13}{3}\)
a:Đặt x^2=a
PT ban đầu sẽ là a^2-2a-3m+1=0(1)
Để pt ban đầu có 4 nghiệm phân biệt thì pt (1) có hai nghiệm cùng dương
=>\(\left\{{}\begin{matrix}\left(-2\right)^2-4\cdot1\cdot\left(-3m+1\right)>0\\\dfrac{2}{1}>0\\\dfrac{-3m+1}{1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4+12m-4>0\\-3m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< \dfrac{1}{3}\end{matrix}\right.\)
b: Để pt có 3 nghiệm thì (1) có một nghiệm dương và một nghiệm bằng 0
=>-3m+1=0
=>m=1/3