K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2022

a:Đặt x^2=a

PT ban đầu sẽ là a^2-2a-3m+1=0(1)

Để pt ban đầu có 4 nghiệm phân biệt thì pt (1) có hai nghiệm cùng dương

=>\(\left\{{}\begin{matrix}\left(-2\right)^2-4\cdot1\cdot\left(-3m+1\right)>0\\\dfrac{2}{1}>0\\\dfrac{-3m+1}{1}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4+12m-4>0\\-3m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< \dfrac{1}{3}\end{matrix}\right.\)

b: Để pt có 3 nghiệm thì (1) có một nghiệm dương và một nghiệm bằng 0

=>-3m+1=0

=>m=1/3

a: \(\Delta=\left(2m+2\right)^2-4\cdot4m=4m^2+8m+4-16m=\left(2m-2\right)^2\)

Để phương trình có nghiệm kép thì 2m-2=0

hay m=2

b: Thay x=4 vào pt, ta được:

\(16-8\left(m+1\right)+4m=0\)

=>16-8m-4+4m=0

=>12-4m=0

hay m=3

c: Để phương trình có hai nghiệm cùng dấu thì 2(m+1)>0

=>m>-1

e: Để phương trình có hai nghiệm dương thì \(\left\{{}\begin{matrix}m+1>0\\4m>0\end{matrix}\right.\Leftrightarrow m>0\)

16 tháng 7 2019

\(x^2+4x-3m+1=0\)

Để (1) có 2 nghiệm phân biệt x1, x2 thì \(\Delta'=2^2-\left(3m+1\right)=-3m+3>0\)\(\Leftrightarrow\)\(m< 1\)

a) pt (1) có 1 nghiệm âm => nghiệm còn lại dương => 2 nghiệm trái dấu => \(x_1x_2< 0\)

Vi-et: \(x_1x_2=1-3m< 0\)\(\Leftrightarrow\)\(m< \frac{1}{3}\)

b) pt có 2 nghiệm phân biệt \(\hept{\begin{cases}x_1=-2-\sqrt{3-3m}\\x_1=-2+\sqrt{3-3m}\end{cases}}\)

Dễ thấy \(x_1< x_2\) nên ta cần tìm m để \(x_2=-2+\sqrt{3-3m}< 2\)

\(\Leftrightarrow\)\(\sqrt{3-3m}< 4\)\(\Leftrightarrow\)\(m>\frac{-13}{3}\)