K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 3 2023

\(\Delta'=1-4\left(2m-4\right)>0\Rightarrow m< \dfrac{17}{8}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=2m-4\end{matrix}\right.\)

Từ \(x_1+x_2=-1\Rightarrow x_2=-1-x_1\)

Thế vào \(x_1^2=2x_2+5\)

\(\Rightarrow x_1^2=2\left(-1-x_1\right)+5\)

\(\Leftrightarrow x_1^2+2x_1-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=1\Rightarrow x_2=-2\\x_1=-3\Rightarrow x_2=2\end{matrix}\right.\)

Thế vào \(x_1x_2=2m-4\)

\(\Rightarrow\left[{}\begin{matrix}2m-4=-2\\2m-4=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\) (thỏa mãn)

x1^2+x2^2=(x1+x2)^2-2x1x2

=((m+1)/2)^2-2*(-6/2)

=1/4(m^2+2m+1)+6

=>x1^2=1/4m^2+1/2m+25/4-x2^2

x1^2+x2=-2

=>1/4m^2+1/2m+25/4-x2^2+x2=-2

=>-x2^2+x2+1/4m^2+1/2m+33/4=0

=>x2^2-x2-1/4m^2-1/2m-33/4=0

Δ=(-1)^2-4*1*(-1/4m^2-1/2m-33/4)

=1+m^2+2m+33

=(m+1)^2+33>=33

=>Phương trình luôn có m thỏa mãn

Δ=(2m)^2-4(-2m-1)

=4m^2+8m+4=(2m+2)^2

Để pt có hai nghiệm pb thì 2m+2<>0

=>m<>-1

x1+x2=-2m; x1x2=-2m-1

x1^2+x2^2=(x1+x2)^2-2x1x2

=(-2m)^2-2(-2m-1)

=4m^2+4m+2

\(\dfrac{6}{x1}=\dfrac{x1+1}{x2}\)

=>x1^2+x1-6x2=0

=>4m^2+4m+2-x2^2+-2m-x2-6x2=0

=>-x2^2-7x2+4m^2+2m+2=0

=>\(x_2^2+7x_2-4m^2-2m-2=0\)(1)

\(\text{Δ}=7^2-4\left(-4m^2-2m-2\right)\)

\(=49+16m^2+8m+8\)

=16m^2+8m+57

=16m^2+8m+1+56=(4m+1)^2+56>=56>0

=>(1)luôn có nghiệm

24 tháng 5 2017

Phương trình đã cho có hai nghiệm khi và chỉ khi Δ ' ≥ 0 ⇔ − 2 m + 4 ≥ 0 ⇔ m ≤ 2     1 .

Theo hệ thức Vi-ét:  x 1 + x 2 = 2 m − 1 x 1 . x 2 = m 2 − 3

Mà  x 1 2 + 4 x 1 + 2 x 2 − 2 m x 1 = 1 ⇔ x 1 x 1 − 2 m + 2 + 2 x 1 + x 2 = 1 ⇔ − x 1 . x 2 + 2 x 1 + x 2 = 1 ⇔ − m 2 + 3 + 4 m − 1 = 1 ⇔ m 2 − 4 m + 2 = 0 ⇔ m = 2 + 2 m = 2 − 2      2

Từ (1) và (2) suy ra  m = 2 − 2

11 tháng 6 2021

a=1,b=-4,c=m-1

Ta có : △ = b\(^2\)-4ac =16-4(m-2)=16-4m+8

Để PT(1) có nghiệm kép thì △=0 <=> 16-4m+8=0<=> 4m=24<=>m=6

Với m=6 PT(1) <=> x\(^2\)-4x+6-2=0<=>x\(^2\)-4x+4=0

Lại Có m=6 thì pt có nghiệm kép => x\(_1\)=x\(_2\)=-\(\dfrac{b}{2a}\)=2

Vậy Với m=6 thì pt 1 có nghiệm kép x=1

b) Theo hệ thức Vi-et 

Ta có: x\(_1\)+x\(_2\)=\(\dfrac{-b}{a}\)=4 và x\(_1\).x\(_2\)=\(\dfrac{c}{a}\)=m-2

x1\(^2\)+x2\(^2\)=9

<=> (x\(_1\)+x\(_2\))\(^2\)-2x\(_1\).x\(_2\)=9

<=>16-2m+4=9

<=>2m=1

<=> m=\(\dfrac{1}{2}\)

Vậy m =\(\dfrac{1}{2}\) thì pt(1) có 2 nghiệm thõa mãn x\(_1\)\(^2\)+ x\(_2\)\(^2\)=9

12 tháng 6 2021

câu b) m phải =\(\dfrac{11}{2}\) chứ ạ

13 tháng 6 2021

Xét phương trình: \(x^2-2\left(m+3\right)x+2m+5=0\Rightarrow\Delta'=\left(m+3\right)^2-2m-5=\left(m+2\right)^2\ge0\) .

Do đó phương trình luôn có 2 nghiệm và để phương trình có 2 nghiệm phân biệt thì \(m\ne-2.\)

Theo định lý viet thì ta có: \(\hept{\begin{cases}x_1+x_2=2m+6\\x_1x_2=2m+5\end{cases}}\). Do đó: \(m>-\frac{5}{2}\)\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=\frac{4}{3}\Rightarrow\frac{1}{x_1}+\frac{1}{x_2}+2\sqrt{\frac{1}{x_1x_2}}=\frac{x_1+x_2}{x_1x_2}+2\sqrt{\frac{1}{2m+5}}=\frac{16}{9}\)

\(\Leftrightarrow\frac{2m+6}{2m+5}+2\sqrt{\frac{1}{2m+5}}=\frac{1}{2m+5}+2\sqrt{\frac{1}{2m+5}}+1=\left(\sqrt{\frac{1}{2m+5}}+1\right)^2=\frac{16}{9}\)

\(\Rightarrow\sqrt{\frac{1}{2m+5}}=\frac{1}{3}\Leftrightarrow\frac{1}{2m+5}=\frac{1}{9}\Leftrightarrow2m+5=9\Leftrightarrow m=2.\)

Vậy \(m=2.\)

3 tháng 6 2021

 

Theo viet ta có

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m\end{matrix}\right.\)

Ta có: \(x_1^2+x_1-x_2=5-2m\)

\(\Leftrightarrow x_1^2+x_1-x_2=5+x_1x_2\)

\(\Leftrightarrow\left(x_1^2+x_1\right)-\left(x_2-x_1x_2\right)=5\)

\(\Leftrightarrow x_1\left(x_1+1\right)-x_2\left(x_1+1\right)=5\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+1\right)=5\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1-x_2=1\\x_1+1=5\end{matrix}\right.\\\left\{{}\begin{matrix}x_1-x_2=5\\x_1+1=1\end{matrix}\right.\end{matrix}\right.\)

-Với \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1+1=5\end{matrix}\right.\)             \(\Leftrightarrow\left\{{}\begin{matrix}x_2=3\\x_1=4\end{matrix}\right.\)

\(\Rightarrow x_1x_2=12=-2m\)

\(\Rightarrow m=-6\)

-Với \(\left\{{}\begin{matrix}x_1-x_2=5\\x_1+1=1\end{matrix}\right.\)              \(\Leftrightarrow\left\{{}\begin{matrix}x_2=-5\\x_1=0\end{matrix}\right.\)

\(\Rightarrow x_1.x_2=0=-2m\)

\(\Rightarrow m=0\)

Vậy \(m=0;m=-6\)

-Chúc bạn học tốt-

4 tháng 6 2021

Thank bạn