K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Lời giải:

a) Khi $m=2$ thì pt trở thành:

$x^2-10x+15=0\Leftrightarrow (x-5)^2=10\Rightarrow x=5\pm \sqrt{10}$
b) 

Để pt có 2 nghiệm pb $x_1,x_2$ thì trước tiên:

$\Delta'=(2m+1)^2-(4m^2-2m+3)>0$

$\Leftrightarrow 6m-2>0\Leftrightarrow m>\frac{1}{3}$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(2m+1)\\ x_1x_2=4m^2-2m+3\end{matrix}\right.\)

Để $(x_1-1)^2+(x_2-1)^2+2(x_1+x_2-x_1x_2)=18$

$\Leftrightarrow x_1^2+x_2^2-2(x_1+x_2)+2+2(x_1+x_2-x_1x_2)=18$

$\Leftrightarrow x_1^2+x_2^2-2x_1x_2=16$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=16$

$\Leftrightarrow 4(2m+1)^2-4(4m^2-2m+3)=16$

$\Leftrightarrow (2m+1)^2-(4m^2-2m+3)=4$

$\Leftrightarrow 6m-2=4\Leftrightarrow m=1$ (thỏa mãn)

vậy...........

a: Để phương trình có hai nghiệm trái dấu thì

m^2+2m+3<0

=>m^2+2m+1+2<0

=>(m+1)^2+2<0(vô lý)

b:

Δ=(2m+3)^2-4(m^2+2m+3)

=4m^2+12m+9-4m^2-8m-12

=4m-3

Để phương trình có hai nghiệm phân biệt thì 4m-3>0

=>m>3/4

4x1x2=(x1+x2)^2-2(x1+x2)+5

=>4*(m^2+2m+3)=(2m+3)^2-2(2m+3)+5

=>4m^2+8m+12=4m^2+12m+9-4m-6+5

=>8m+12=8m-1

=>12=-1(vô lý)

3 tháng 5 2022

Để  phương trình 1 có 2 nghiệm phân biệt

=> \(\Delta,>0\)  <=> \(\left[-\left(m-1\right)\right]^2-\left(-2m+5\right)>0\)

<=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

=> Theo hệ thức Vi ét ta có 

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\circledast\\x_1.x_2=-2m+5\circledast\circledast\end{matrix}\right.\)   

Theo bài ra ta có 

\(x_1-x_2=-2\circledcirc\)

Từ \(\circledast vaf\circledcirc\) ta có hệ pt 

\(\left\{{}\begin{matrix}x1+x2=2m-2\\x1-x2=-2\end{matrix}\right.\)  <=>\(\left\{{}\begin{matrix}x1=m-2\\x2=m\end{matrix}\right.\)

Thay x1 và x2 vào \(\circledast\circledast\)ta dc

\(\left(m-2\right)m=-2m+5\)

<=> m=\(\left[{}\begin{matrix}-\sqrt{5}\\\sqrt{5}\end{matrix}\right.\left(tm\right)\)

Vậy ...

 

a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)

\(=4m^2+16m+16+8m+20=4m^2+24m+36\)

\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì m+3<>0

hay m<>-3

Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)

\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)

\(\Leftrightarrow4m^2+24m+36=4\)

\(\Leftrightarrow m^2+6m+9=1\)

=>m+3=1 hoặc m+3=-1

=>m=-2 hoặc m=-4

NV
22 tháng 1 2024

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)

Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)

\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)

\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)

\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)

\(\Leftrightarrow2m^2+2m-4=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

31 tháng 3 2023

a=1  

b=-2(m+1)

c=m2+2m

△'=(m+1)2-(m2+2m)1=m2+2m+1-m2-2m=1>0 ∀ m

=> pt luôn có 2n0 phân biệt ∀m