Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình có 2 nghiệm thì: \(\Delta^'\ge0\)
Hay:\(2^2-\left(2m-5\right)\ge0\)
\(\Leftrightarrow4-2m+5\ge0\)
\(\Leftrightarrow-2m\ge-9\)
\(\Leftrightarrow m\le\frac{9}{2}\)
Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=2m-5\end{cases}}\)
Ta có: \(x_1^2+x_2^2-x_1x_2=20\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=20\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=20\)
\(\Leftrightarrow\left(-4\right)^2-3\left(2m-5\right)=20\)
\(\Leftrightarrow16-6m+15=20\)
\(\Leftrightarrow-6m=-11\)
\(\Leftrightarrow m=\frac{11}{6}\)(tm)
=.= hk tốt!!
a) x1^2+x2^2=(x1+x2)^2-2x1x2
x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)
áp dụng viét thay vô
b) giải hệ pt
đenta>=0
x1+x2=-m
x1x2=m+3
và 2x1+3x2=5
c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại
d)áp dụng viét
x1+x2=-m
x1x2=m+3
CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3
a, tính biệt thức delta rồi ép ra hđt thì nó luôn >0
b,theo vi-ét: ..... (tự tính nha bạn )
ta có : x12+x22= 2x1x2 +65
=> (x1+x2)2 - 2x1x2 = 2x1x2 +65
thay tổng và tích từ vi-ét chứa ẩn m vào rồi tính ra m
nhạt =.=
a, * Với m + 1 = 0 => m = -1
Phương trình trở thành: -2x - 4 = 0 <=> 2x = -4 <=> x = -2
m = -1 phương trình có nghiệm x = -2
* Với m + 1 \(\ne\)0 \(\Leftrightarrow\)m\(\ne\) -1
\(\Delta'\) =( m + 2 )-(m+1) (m-3) = m2 + 4m + 4 - m2 + 3m - m + 3
= 6m + 7
Phương trình có nghiệm : \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\) 6m + 7 \(\ge\) 0 \(\Leftrightarrow\)6m \(\ge\) -7 \(\Leftrightarrow\)m \(\ge-\frac{7}{6}\)
Phương trình có nghiệm \(\Leftrightarrow\) m \(\ne\) -1 ; m \(\ge\)\(-\frac{7}{6}\)
Kết luận : Phương trình có nghiệm \(\Leftrightarrow m\ge-\frac{7}{6}\)
b, Điều kiện : m \(\ge-\frac{7}{6};m\ne-1\)
Theo hệ thức Viet , ta có \(\hept{\begin{cases}S=x_1+x_2=\frac{2\left(m+2\right)}{m+1}\\P=x._1x_2=\frac{m-3}{m+1}\end{cases}}\)
Do đó \(\left(4x_1+1\right)\left(4x_2+1\right)=18\)
\(\Leftrightarrow16x_1x_2+4x_1+4x_2+1=18\)
\(\Leftrightarrow16x_1x_2+4\left(x_1+x_2\right)-17=0\)
\(\Leftrightarrow\frac{16\left(m-3\right)}{m+1}+\frac{8\left(m+2\right)}{m+1}-17=0\)
\(\Leftrightarrow16\left(m-3\right)+8\left(m+2\right)-17\left(m+1\right)=0\)
\(\Leftrightarrow16m-48+8m+16-17m-17=0\)
\(\Leftrightarrow7m-49=0\Leftrightarrow7m=49\Leftrightarrow m=7\)
m = 7 thỏa mãn điều kiện \(\hept{\begin{cases}m\ne-1\\m\ge-\frac{7}{6}\end{cases}}\)
Vậy \(m=7\) thì phương trình có 2 nghiệm \(x_1;x_2\)thỏa mãn:
\(4\left(x_1+1\right)\left(4x_2+1\right)=18\)