Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm (P) và (d):
\(x^2=mx+1\Leftrightarrow x^2-mx-1=0\) (1)
\(ac=-1< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu hay (d) luôn cắt (P) ở 2 phía của Oy
Không mất tính tổng quát, giả sử 2 nghiệm của (1) là \(x_A< 0< x_B\)
Gọi C và D lần lượt là hình chiếu vuông góc của A và B lên Ox
\(\Rightarrow x_C=x_A;x_D=x_B\)
\(S_{OAB}=S_{ABDC}-\left(S_{OAC}+S_{OBD}\right)\)
\(=\dfrac{1}{2}\left(x_B-x_A\right)\left(y_A+y_B\right)-\dfrac{1}{2}\left(y_A.\left(-x_A\right)+y_B.x_B\right)\)
\(=\dfrac{1}{2}\left(x_B-x_A\right)\left[m\left(x_A+x_B\right)+2\right]-\dfrac{1}{2}\left(x_B\left(mx_B+1\right)-x_A\left(mx_A+1\right)\right)\)
\(=\dfrac{1}{2}\left(x_B-x_A\right)=2\Rightarrow x_B-x_A=4\)
Kết hợp hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=m\\x_B-x_A=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B=\dfrac{m+4}{2}\\x_A=\dfrac{m-4}{2}\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{m+4}{2}\right)\left(\dfrac{m-4}{2}\right)=-1\Leftrightarrow m^2-16=-4\)
\(\Rightarrow m=\pm2\sqrt{3}\)
Xét pt hoành độ gđ của (P) và (d) có:
\(x^2=\left(2m-1\right)x+8\)
\(\Leftrightarrow x^2-\left(2m-1\right)x-8=0\) (*)
Có \(ac=-8< 0\) => pt luôn có hai nghiệm trái dấu
=> (d) luôn cắt (P) tại hai điểm pb có hoành độ trái dấu hay (d) luôn cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung
Hoành độ gđ của A và B là hai nghiệm của pt (*) mà \(x_1< x_2\Rightarrow x_1< 0< x_2\)
Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=-8\end{matrix}\right.\) (|)
Giả sử \(\dfrac{\left|x_1\right|}{\left|x_2\right|}=4\)
\(\Leftrightarrow\dfrac{-x_1}{x_2}=4\)\(\Leftrightarrow x_1+4x_2=0\) (||)
Từ (|), (||) có hệ: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1+4x_2=0\\x_1x_2=-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{1-2m}{3}\\x_1=\dfrac{4\left(2m-1\right)}{3}\\x_1x_2=-8\end{matrix}\right.\)\(\Rightarrow\dfrac{\left(1-2m\right)}{3}.\dfrac{4\left(2m-1\right)}{3}=-8\) \(\Leftrightarrow\left(1-2m\right)^2=18\)
\(\Leftrightarrow m=\dfrac{1\pm\sqrt{18}}{2}\)
Vậy...
a: PTHDGĐ là:
x^2-(m-1)x-(m^2+1)=0
a*c=-m^2-1<0
=>(P) luôn cắt (d) tại hai điểm phân biệt nằm về hai phía của trục Oy
b: |x1|+|x2|=2căn 2
=>x1^2+x2^2+2|x1x2|=8
=>(x1+x2)^2-2x1x2+2|x1x2|=8
=>(m-1)^2-2(-m^2+1)+2|-m^2-1|=8
=>(m-1)^2+2(m^2+1)+2(m^2+1)=8
=>m^2-2m+1+4m^2+4=8
=>5m^2-2m-3=0
=>5m^2-5m+3m-3=0
=>(m-1)(5m+3)=0
=>m=1 hoặc m=-3/5
1: Điểm cố định của (d) là:
x=0 và y=m*0+2=2
2: PTHĐGĐ là:
x2-mx-2=0
a=1; b=-m; c=-2
Vì a*c<0
nên (P) luôn cắt (d) tại hai điểm khác phía so với trục tung
a) Gọi A(xA;yA) là điểm cố định mà (d) luôn đi qua
=> yA = mxA + 1 với mọi m
=> xA.m + 1 - yA = 0 với mọi m
<=> xA = 0 và 1 - yA = 0
<=> xA = 0 ; yA = 1
Vậy A(0;1)
b) Phương trình hoành đọ giao điểm của (P) và (d) là:
x2 = mx + 1
<=> x2 - mx - 1 = 0
\(\Delta\) = (-m)2 + 4 = m2 + 4 > 0 với mọi m
=> Pt có 2 nghiệm pb với mọi m
=> (P) luôn cắt (d) tại 2 điểm phân biệt A;B
Theo Vi - et ta có: xAxB = -1 < 0
=> xA ; xB trái dấu => A; B nằm khác phía so với trục tung
a: f(2)=2^2=4
thay x=2 và y=4 vào (d), ta được:
4(m-1)+m=4
=>5m-4=4
=>m=8/5
b: PTHĐGĐ là;
x^2-2(m-1)x-m=0
Để (P) cắt (d) tại hai điểm nằm về hai phía so với trục tung thì -m<0
=>m>0
x1^2+2(m-1)x2=6
=>x1^2+x2(x1+x2)=6
=>x1^2+x2^2+x1x2=6
=>(x1+x2)^2-x1x2=6
=>(2m-2)^2-(-m)-6=0
=>4m^2-8m+4+m-6=0
=>m=2(nhận) hoặc m=-1/4(loại)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath
a: Thay m=3 vào (d), ta được:
y=3x-3+1=3x-2
Tọa độ giao điểm của (P) và (d) là:
\(\left\{{}\begin{matrix}x^2-3x+2=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-2\right)=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(1;1\right);\left(2;4\right)\right\}\)
b: Phương trình hoành độ giao điểm là:
\(x^2-mx+m-1=0\)
Để (P) cắt (d) tại hai điểm về hai phía của trục tung thì m-1<0
hay m<1
c: Để (P) cắt (d) tại hai điểm phân biệt có hoành độ dương thì
\(\left\{{}\begin{matrix}\left(-m\right)^2-4\left(m-1\right)>0\\m>0\\m-1>0\end{matrix}\right.\Leftrightarrow m>1\)