K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

a) m=-1 : PT <=> -x+3=0<=>x=-3

b) *m=-1 PT (1) có nghiệm

vậy chọn m=-1

m\(\ne-1\): PT (1) có nghiệm <=>

\(\Delta\ge0\Leftrightarrow\left(2m+3\right)^2-4\cdot\left(m+1\right)\left(m+4\right)\ge0\\ \Leftrightarrow-8x-7\ge0\Leftrightarrow x\le-\dfrac{7}{8}\)

kết hợp điều kiện => \(m\in\left(-\infty;-1\right)\cup(-1;-\dfrac{7}{8}]\)

vậy \(m\in(-\infty;-\dfrac{7}{8}]\)

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

21 tháng 2 2019

\(1) x^2-3x-4=0 \\\Leftrightarrow -2x^2-4=0 \\\Leftrightarrow -2(x^2+2)=0 \\\Leftrightarrow x^2+2=0 \)

\(\Leftrightarrow x^2=-2 \) (vô lý)

Vậy \(S=\left\{\varnothing\right\}\)

21 tháng 2 2019

Bài 2:

a) Khi m = - 2, phương trình (1) trở thành:\(x^2-6x-7=0\)

\(\Delta=b^2-4ac=\left(-6^2\right)-4.\left(-7\right)=64\)

\(\sqrt{\Delta}=\sqrt{64}=8>0\)

Phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{6+8}{2}=7\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{6-8}{2}=-1\)

Vậy \(S=\left\{7;-1\right\}\)

4 tháng 3 2023

a)Với `m=2` ta có phương trình:

`x^2-7x+2.2+8=0`

`<=>x^2-7x+4+8=0`

`<=>x^2-7x+12=0`

`<=>x^2-3x-4x+12=0`

`<=>(x-3)(x-4)=0`

`<=>[(x=3),(x=4):}`

Vậy với `m=2` thì pt có 2 nghiệm phân biệt là 3 và 4.

`b)` Phương trình có 2 nghiệm `x_1,x_2`

`<=>\Delta>=0`

`<=>7^2-4(2m+8)>=0`

`<=>49-8m-32>=0`

`<=>17>=8m`

`<=>m<=17/8`

Vậy với `m<=17/8` thì pt có 2 nghiệm `x_1,x_2.`

AH
Akai Haruma
Giáo viên
4 tháng 3 2023

Lời giải:
a. Khi $m=2$ thì pt trở thành:
$x^2-7x+12=0$

$\Leftrightarrow (x-3)(x-4)=0$

$\Leftrightarrow x-3=0$ hoặc $x-4=0$

$\Leftrightarrow x=3$ hoặc $x=4$

b.

Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=49-4(2m+8)\geq 0$

$\Leftrightarrow m\leq \frac{17}{8}$

8 tháng 3 2022

Cho phương trình: x^2 - 2mx + 2(m - 2) = 0. Tìm m để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt 
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0

5 tháng 3 2023

Thế `m=2` vào (1) \(\Leftrightarrow x^2-7x+12=0\)

\(\Delta=\left(-7\right)^2-4.1.12=1>0\)

`->` ptr có 2 nghiệm phân biệt

\(\left\{{}\begin{matrix}x=\dfrac{7+\sqrt{1}}{1}=4\\x=\dfrac{7-\sqrt{1}}{1}=3\end{matrix}\right.\)

Vậy \(S=\left\{3;4\right\}\)

b. \(\Delta=\left(-7\right)^2-4\left(2m+8\right)=49-8m-32=17-8m\)

Để ptr có 2 nghiệm  \(\Leftrightarrow\Delta\ge0\)

                                 \(\Leftrightarrow m\le\dfrac{17}{8}\)

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=2m+8\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=\left(x_1x_2-7\right)^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2-7\right)^2\)

\(\Leftrightarrow7^2-2\left(2m+8\right)=\left(2m+8-7\right)^2\)

\(\Leftrightarrow49-4m-16=4m^2+4m+1\)

\(\Leftrightarrow4m^2=32\)

\(\Leftrightarrow m^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\sqrt{2}\left(l\right)\\m=-2\sqrt{2}\left(n\right)\end{matrix}\right.\)

Vậy \(m=-2\sqrt{2}\) thỏa đề bài

                                 

 

5 tháng 3 2023

Xem lại câu a

chỗ 

\(\dfrac{7-\sqrt{1}}{1}=6\) nha  

Bài 2: 

a: \(x^2-4x+3=0\)

=>x=1 hoặc x=3

\(x_1^2+x_2^2=1^2+3^2=10\)

b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)

c: \(x_1^3+x_2^3=1^3+3^3=28\)

d: \(x_1-x_2=1-3=-2\)

a: \(\text{Δ}=\left(-6\right)^2-4\left(m+1\right)=-4m-4+36=-4m+32\)

Để phương trình có nghiệm thì -4m+32>=0

=>-4m>=-32

hay m<=8

b: Theo Vi-et,ta được:

\(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=m+1\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=20\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)

\(\Leftrightarrow36-2\left(m+1\right)=20\)

=>2(m+1)=16

=>m+1=8

hay m=7(nhận)

 

26 tháng 5 2022

`a)` Ptr có nghiệm`<=>\Delta' >= 0`

                             `<=>(-3)^2-(m+1) >= 0`

                             `<=>9-m-1 >= 0<=>m <= 8`

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

`b)`Với `m <= 8`, áp dụng Viét có:`{(x_1+x_2=[-b]/a=6),(x_1.x_2=c/a=m+1):}`

Ta có:`x_1 ^2+x_2 ^2=20`

`<=>(x_1+x_2)^2-2x_1.x_2=20`

`<=>6^2-2(m+1)=20`

`<=>36-2m-2=20`

`<=>2m=14<=>m=7` (t/m)