Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m=1 vào phương trình, ta được:
\(x^4-4x^2-5=0\)
\(\Leftrightarrow x^4+x^2-5x^2-5=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)-5\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-5\right)=0\)
mà \(x^2+1>0\forall x\)
nên \(x^2-5=0\)
\(\Leftrightarrow x^2=5\)
hay \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
Vậy: Khi m=1 thì tập nghiệm của phương trình là: \(S=\left\{\sqrt{5};-\sqrt{5}\right\}\)
a.
Do \(x_1=-1\) là nghiệm
\(\Rightarrow\left(m-3\right).\left(-1\right)^2+\left(m+5\right).\left(-1\right)-m+7=0\)
\(\Rightarrow m-3-m-5-m+7=0\)
\(\Rightarrow m=-1\)
Theo định lý Viet:
\(x_1+x_2=-\dfrac{m+5}{m-3}=1\Rightarrow x_2=1-x_1=2\)
b.
Đề bài câu này sai, với \(m=3\) pt này chỉ có 1 nghiệm \(x=-\dfrac{1}{2}\)
a) Thay m=3
\(x^2-2.3.m+3^2-3=0\)
\(x^2-6x+6=0\)
\(\text{∆}=6^2-4.6=12>0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6+\sqrt{12}}{2}=3+\sqrt{3}\\x=\dfrac{6-\sqrt{12}}{2}=3-\sqrt{3}\end{matrix}\right.\)
b) \(\text{∆}=\left(-2m\right)^2-4.\left(m^2-3\right)\)
\(=4m^2-4m^2+12=12>0\)
⇒ pt có 2 nghiệm phân biệt với mọi m
a.
⇔ \(5x^2-3x+\left(-7\right)-1=0\)
⇔ \(5x^2-3x-8=0\)
Δ=\(b^2-4ac\) \(=\left(-3\right)^2-4.5.\left(-8\right)=169\)>0
Vì Δ>0 nên pt có 2 nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{169}}{2.5}=\dfrac{8}{5}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{169}}{2.5}=-1\)
b, Để phương trình có 2 nghiệm \(\Delta\ge0\)
hay \(\left(2m+8\right)^2-4.m^2=4m^2+32m+64-4m^2=32m+64\ge0\)
\(\Leftrightarrow32m\ge64\Leftrightarrow m\ge2\)
Theo Vi et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+8\\x_1x_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)
mà \(\left(x_1+x_2\right)^2=4m^2+32m+64\Rightarrow x_1^2+x_2^2=4m^2+32m+64-2x_1x_2\)
\(=4m^2+32m+64-2m^2=2m^2+32m+64\)
Lại có : \(x_1^2+x_2^2=-2\)hay \(2m^2+32m+66=0\Leftrightarrow m=-8+\sqrt{31}\left(ktm\right);m=-8-\sqrt{31}\left(ktm\right)\)
a) Thay m=8 vào phương trình, ta được:
\(x^2-2\cdot\left(8+4\right)x+8^2=0\)
\(\Leftrightarrow x^2-24x+64=0\)
\(\text{Δ}=\left(-24\right)^2-4\cdot1\cdot64=576-256=320\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{24+8\sqrt{5}}{2}=12+4\sqrt{5}\\x_2=\dfrac{24-8\sqrt{5}}{2}=12-4\sqrt{5}\end{matrix}\right.\)
Vậy: Khi m=8 thì phương trình có hai nghiệm phân biệt là \(x_1=12+4\sqrt{5};x_2=12-4\sqrt{5}\)
a: Khi x=3 thì pt sẽ là:
3^2-2*3+m+3=0
=>m-6+9+3=0
=>m+6=0
=>m=-6
x1+x2=2
=>x2=2-3=-1
b:
Δ=(-2)^2-4(m+3)
=4-4m-12
=-4m-8
Để phương trình có hai nghiệm phân biệt thì:
-4m-8>=0
=>m<=-2
x1^3+x2^3=8
=>(x1+x2)^3-3x1x2(x1+x2)=8
=>2^3-3*2(m+3)=8
=>6(m+3)=0
=>m+3=0
=>m=-3(nhận)
\(a,m=5\Leftrightarrow x^2+10x+25-3x+6=0\\ \Leftrightarrow x^2+7x+31=0\\ \Delta=49-4\cdot31< 0\\ \Leftrightarrow x\in\varnothing\)
\(b,PT\Leftrightarrow x^2+x\left(2m-3\right)+m^2+6=0\)
PT có nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}1\ne0\\\Delta=\left(2m-3\right)^2-4\left(m^2+6\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow4m^2-12m+9-4m^2-24\ge0\\ \Leftrightarrow-12m-15\ge0\\ \Leftrightarrow m\le-\dfrac{5}{4}\)
a) m = 1, phương trình tương đương:
x² + 4x = 0
⇔ x(x + 4) = 0
⇔ x = 0 hoặc x + 4 = 0
*) x + 4 = 0
⇔ x = -4
Vậy S = {-4; 0}
b) ∆' = [-(m - 3)]² - (m² - 1)
= m² - 6m + 9 - m² + 1
= -6m + 10
Phương trình có hai nghiệm phân biệt khi ∆' > 0
⇔ -6m + 10 > 0
⇔ -6m > -10
⇔ m < 5/3
Vậy m < 5/3 thì phương trình đã cho có hai nghiệm phân biệt
a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`
`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.
b) Viet: `x_1+x_2=-2m+4`
`x_1x_2=m^2-4m`
`3/(x_1) + x_2=3/(x_2)+x_1`
`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`
`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`
`<=>(x_1-x_2).(3+x_1x_2)=0`
`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`
`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`
`<=> 4.(3+m^2-4m)=0`
`<=> m^2-4m+3=0`
`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
Vậy `m \in {1;3}`.
`a)` Thay `m=1` vào ptr có:
`2x^2+x+1/8-5=0`
`<=>2x^2+x-39/8=0`
Ptr có: `\Delta=40 > 0`
`=>` Ptr có `2` nghiệm phân biệt
`x_1=[-b+\sqrt{\Delta}]/[2a]=[-1+2\sqrt{10}]/4`
`x_2=[-b-\sqrt{\Delta}]/[2a]=[-1-2\sqrt{10}]/4`
`b)` Ptr có: `\Delta=m^2-8(1/8m-5)=m^2-m+40=(m-0,5)^2+39,75`
Ptr vô nghiệm `<=>\Delta < 0<=>(m-0,5)^2+39,75 < 0`
Mà `(m-0,5)^2+39,75 > 0 AA m`
`=>` Không tồn tại `m` để ptr vô nghiệm
`c)` Ptr có: `\Delta=(m-0,5)^2+39,75 > 0 AA m`
`=>AA m` ptr luôn có `2` nghiệm phân biệt.