Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng đen ta phẩy để giải pt.
kết quả khi m > \(\frac{5}{6}\)thì pt có nghiệm
theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)
x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)
theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
<=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)
thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
\(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)\)
\(=5m^2-6m+9=5\left(m-\frac{3}{5}\right)^2+\frac{36}{5}>0;\forall m\)
Mặt khác \(-m^2+m-2\ne0;\forall m\Rightarrow\) biểu thức đề bài luôn xác định
\(B=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^3-6\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)\)
Xét \(A=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(m-1\right)^2-2\left(-m^2+m-2\right)}{-m^2+m-2}=\frac{3m^2-4m+5}{-m^2+m-2}\)
\(\Rightarrow-Am^2+Am-2A=3m^2-4m+5\)
\(\Leftrightarrow\left(A+3\right)m^2-\left(A+4\right)m+2A+5=0\)
\(\Delta=\left(A+4\right)^2-4\left(A+3\right)\left(2A+5\right)\ge0\)
\(\Leftrightarrow7A^2+36A+44\le0\Rightarrow-\frac{22}{7}\le A\le-2\)
Thay vào B:
\(B=A^3-6A\) với \(-\frac{22}{7}\le A\le-2\)
\(B=A^2\left(A+2\right)-2\left(A+1\right)\left(A+2\right)+4\)
Do \(A\le-2\Rightarrow\left\{{}\begin{matrix}A+2\le0\\\left(A+1\right)\left(A+2\right)\ge0\end{matrix}\right.\) \(\Rightarrow B\le4\)
\(\Rightarrow B_{max}=4\) khi \(A=-2\) hay \(m=1\)
có \(\Delta'=\left[-\left(m-1\right)\right]^2-m^2+m+5\)
\(\Delta'=m^2-2m+1-m^2+m+5\)
\(\Delta'=-m+6\)
để pt (1) có 2 nghiệm \(x_1;x_2\) \(\Leftrightarrow-m+6>0\)
\(\Leftrightarrow m< 6\)
theo định lí \(Vi-et\) \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m^2-m-5\end{cases}}\)
theo bài ra \(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{10}{3}=0\)
\(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}+\frac{10}{3}=0\) ( \(x_1.x_2\ne0\Leftrightarrow m^2-m-5\ne0\))
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1.x_2}{x_1.x_2}=\frac{-10}{3}\)
\(\Leftrightarrow\frac{\left(2m-2\right)^2-2.\left(m^2-m-5\right)}{m^2-m-5}=-\frac{10}{3}\)
\(\Leftrightarrow\frac{4m^2-8m+4-2m^2+2m+10}{m^2-m-5}=\frac{-10}{3}\)
\(\Leftrightarrow\left(2m^2-6m+14\right).3=-10.\left(m^2-m-5\right)\)
\(\Leftrightarrow6.\left(m^2-3m+7\right)=-10.\left(m^2-m-5\right)\)
\(\Leftrightarrow-3m^2+9m-21=5m^2-5m-25\)
\(\Leftrightarrow-3m^2+9m-21-5m^2+5m+25=0\)
\(\Leftrightarrow-8m^2+14m+4=0\)
\(\Leftrightarrow4m^2-7m-2=0\) \(\left(2\right)\)
từ PT (2) có \(\Delta=\left(-7\right)^2-4.4.\left(-2\right)=49+32=81>0\Rightarrow\sqrt{\Delta}=9\)
vì \(\Delta>0\) nên PT có 2 nghiệm phân biệt
\(m_1=\frac{7-9}{8}=\frac{-1}{4}\) ( TM ĐK
\(m_2=\frac{7+9}{8}=2\) \(m< 6\)và \(m^2-m-5\ne0\))
Bài này bạn áp dụng vi-ét là ra ngay nha !
Chúc bạn học tốt !
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
Bài giải
Ta có : \(\hept{\begin{cases}x_1.x_2=m^2+3\\x_1+x_2=2\left(m+1\right)\end{cases}}\)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{8}{x_1.x_2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{8}{x_1.x_2}\)
<=> ( x1 + x2 ) 2 -2x1x2 = 8
<=>4(m+1)2 -2(m2+ 3 ) = 8 <=> 2m2 + 8m - 10=0
<=> \(\orbr{\begin{cases}m=1\\m=-5\left(L\right)\end{cases}}\)
\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+3\right)\)
= 4(m + 1)2 - 4m2 - 12
= 4m2 + 8m + 4 - 4m2 - 12 = 8m - 8
Để pt có 2 nghiệm thì \(\Delta\ge0\) <=> 8m - 8 \(\ge\)0
<=> 8(m - 1) \(\ge\) 0
<=> m -1 \(\ge\)0
<=> m \(\ge\) 1
Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)=2m+2\\x_1.x_2=m^2+3\end{cases}}\)
Theo đề ta có: \(\frac{x1}{x2}+\frac{x2}{x1}=\frac{8}{x1.x2}\)
ĐK: x1, x2 \(\ne\)0 => \(\hept{\begin{cases}x1+x2\ne0\\x1.x2\ne0\end{cases}}hay\hept{\begin{cases}2m+2\ne0\\m^2+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ne-1\\m^2\ne-3\end{cases}}\Leftrightarrow m\ne-1\)
<=> \(\frac{\left(x_1\right)^2+\left(x_2\right)^2}{x1.x2}=\frac{8}{x1.x2}\)
=> \(\left(x_1\right)^2+\left(x_2\right)^2=8\)
<=> \(\left(x_1+x_2\right)^2-2.x_1.x_2=8\)
Hay (2m + 2)2 - 2(m2 + 3) = 8
<=> 4m2 + 8m + 4 - 2m2 - 6 = 8
<=> 2m2 + 8m - 10 = 0
a + b + c = 2 + 8 + (-10) = 0
=> m = 1 (tmđk) và m = \(\frac{c}{a}=-5\)(ktmđk)
Vậy m = 1 thì ....
Δ=(2m+2)^2-4(-m-5)
=4m^2+8m+4+4m+20
=4m^2+12m+24
=4(m^2+3m+6)
=4(m^2+2*m*3/2+9/4+15/4)
=4(m+3/2)^2+15>=15
=>PT luôn có 2 nghiệm
(x1-x2)^2-x1(x1+3)-x2(x2+3)=-4
=>(x1+x2)^2-4x1x2-(x1+x2)^2+2x1x2-3(x1+x2)=-4
=>-2(-m-5)-3(2m+2)=-4
=>2m+10-6m-6=-4
=>-4m+4=-4
=>-4m=-8
=>m=2